Normalized defining polynomial
\( x^{16} - 3 x^{15} - 17 x^{14} + 27 x^{13} - 2446 x^{12} - 10161 x^{11} + 7582 x^{10} + 42551 x^{9} + 291322 x^{8} + 12968232 x^{7} + 37578055 x^{6} - 154331401 x^{5} - 321602800 x^{4} - 85014601 x^{3} + 505836265 x^{2} + 5247291674 x - 5285070607 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2164959798672044689794137876838502993=43^{4}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $186.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $43, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{369160217966069108863874344047298585484513186045583714267969243733519321453} a^{15} - \frac{153153548715593744200084925787938939664064903371082489381884942630717235115}{369160217966069108863874344047298585484513186045583714267969243733519321453} a^{14} - \frac{39375246780740927967002112480047278366661856807662675106690986443739286059}{369160217966069108863874344047298585484513186045583714267969243733519321453} a^{13} + \frac{111997492897976491827806514020362400503198330345099496068315524947458446444}{369160217966069108863874344047298585484513186045583714267969243733519321453} a^{12} - \frac{17357909374418113498795041158929515875840625496452021763441368420998309640}{369160217966069108863874344047298585484513186045583714267969243733519321453} a^{11} - \frac{66692702401028623898283719096787254028308782097766991427448968316736131926}{369160217966069108863874344047298585484513186045583714267969243733519321453} a^{10} - \frac{40065343531847748474976778142025061411283448868050353378721558904038469814}{369160217966069108863874344047298585484513186045583714267969243733519321453} a^{9} + \frac{184247914960436479415884475356461499455178567067615412154662529052949587411}{369160217966069108863874344047298585484513186045583714267969243733519321453} a^{8} - \frac{86171691771823038542870839607735243707483901626664949787038919813974603360}{369160217966069108863874344047298585484513186045583714267969243733519321453} a^{7} + \frac{87410749528085652435293952550496476130755987774566518324762679616126312422}{369160217966069108863874344047298585484513186045583714267969243733519321453} a^{6} + \frac{104983340108009359351024419558130931066425680250677188043315983378759463367}{369160217966069108863874344047298585484513186045583714267969243733519321453} a^{5} + \frac{93750281219974099606327715716217083766397252679882024976181654230102754899}{369160217966069108863874344047298585484513186045583714267969243733519321453} a^{4} - \frac{138678804906695447425635765929932985852084755008077209493795803424217147621}{369160217966069108863874344047298585484513186045583714267969243733519321453} a^{3} - \frac{135894138514331344209133304692886409255752555602187854038481506671360059431}{369160217966069108863874344047298585484513186045583714267969243733519321453} a^{2} + \frac{126607399860239133356623849793889988704480634646109141994725736409321871926}{369160217966069108863874344047298585484513186045583714267969243733519321453} a - \frac{157935171119815223699041525286594532373599267419558420984290726832865315845}{369160217966069108863874344047298585484513186045583714267969243733519321453}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 274195718818 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $43$ | 43.4.0.1 | $x^{4} - x + 20$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 43.4.2.2 | $x^{4} - 43 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 43.4.0.1 | $x^{4} - x + 20$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 43.4.2.2 | $x^{4} - 43 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97 | Data not computed | ||||||