\\ Pari/GP code for working with number field 16.8.2164959798672044689794137876838502993.1. \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^16 - 4*y^15 - 41*y^14 - 130*y^13 - 2186*y^12 + 10546*y^11 + 124718*y^10 + 77955*y^9 + 18509*y^8 + 8606523*y^7 + 27735607*y^6 + 128700291*y^5 + 1368635976*y^4 + 4658216687*y^3 + 3073249780*y^2 - 7839808132*y - 9179159021, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: \\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 - 4*x^15 - 41*x^14 - 130*x^13 - 2186*x^12 + 10546*x^11 + 124718*x^10 + 77955*x^9 + 18509*x^8 + 8606523*x^7 + 27735607*x^6 + 128700291*x^5 + 1368635976*x^4 + 4658216687*x^3 + 3073249780*x^2 - 7839808132*x - 9179159021, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(L)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])