Normalized defining polynomial
\( x^{16} - 4 x^{15} - 41 x^{14} - 130 x^{13} - 2186 x^{12} + 10546 x^{11} + 124718 x^{10} + 77955 x^{9} + 18509 x^{8} + 8606523 x^{7} + 27735607 x^{6} + 128700291 x^{5} + 1368635976 x^{4} + 4658216687 x^{3} + 3073249780 x^{2} - 7839808132 x - 9179159021 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2164959798672044689794137876838502993=43^{4}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $186.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $43, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{138520095788236766904053035136503347668132915919549944608392024850657675529} a^{15} + \frac{142378976674822602656982179666624406763041611357526408140517415176557352}{451205523740184908482257443441378982632354774982247376574566856191067347} a^{14} - \frac{49464950896409874948693642952696888960340096361954707978352971950405632562}{138520095788236766904053035136503347668132915919549944608392024850657675529} a^{13} - \frac{32161586576284359191341273980644564827716128945019236571305971937303731107}{138520095788236766904053035136503347668132915919549944608392024850657675529} a^{12} - \frac{4334176482240782450825790218755874669091556185783803038470539634153081566}{138520095788236766904053035136503347668132915919549944608392024850657675529} a^{11} + \frac{28839444248161476323251376660988507176926112608647589162707946539490486018}{138520095788236766904053035136503347668132915919549944608392024850657675529} a^{10} + \frac{48545343133289333616136011108251180477115952598622513882823019265384877339}{138520095788236766904053035136503347668132915919549944608392024850657675529} a^{9} + \frac{23633010135914881206785092892241639581396634431519610191172197238643223608}{138520095788236766904053035136503347668132915919549944608392024850657675529} a^{8} + \frac{50245186852584020849600326354629731819145922479753254581657773958828643658}{138520095788236766904053035136503347668132915919549944608392024850657675529} a^{7} + \frac{2156816586269271239411284660650117787005137377425260170990953033654054832}{138520095788236766904053035136503347668132915919549944608392024850657675529} a^{6} + \frac{38058932968855424362890105116273437173283619307073114385944406014567063842}{138520095788236766904053035136503347668132915919549944608392024850657675529} a^{5} + \frac{33237516542026959226688047598901225835890260381027623087011053460501931506}{138520095788236766904053035136503347668132915919549944608392024850657675529} a^{4} - \frac{3434341002421315282574553576111250351524336747745318236228959196558347807}{138520095788236766904053035136503347668132915919549944608392024850657675529} a^{3} - \frac{9748646682109366436231655832758471145003276987988133767049614369114649426}{138520095788236766904053035136503347668132915919549944608392024850657675529} a^{2} + \frac{62832286559522590428612228003302950760426429341596447113012725444824272229}{138520095788236766904053035136503347668132915919549944608392024850657675529} a + \frac{2616804234323650565191330671596346702107980742195330882437837321485908329}{138520095788236766904053035136503347668132915919549944608392024850657675529}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 272048212299 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $43$ | 43.4.0.1 | $x^{4} - x + 20$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 43.4.2.2 | $x^{4} - 43 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.2 | $x^{4} - 43 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 43.4.0.1 | $x^{4} - x + 20$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97 | Data not computed | ||||||