Normalized defining polynomial
\( x^{16} - 32 x^{14} + 116 x^{12} + 1984 x^{10} - 3738 x^{8} - 49952 x^{6} - 82956 x^{4} + 49729 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2163460585448341410282471424=2^{44}\cdot 223^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 223$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{8} + \frac{1}{16} a^{4} - \frac{7}{32}$, $\frac{1}{64} a^{9} - \frac{1}{64} a^{8} + \frac{1}{32} a^{5} - \frac{1}{32} a^{4} + \frac{25}{64} a - \frac{25}{64}$, $\frac{1}{64} a^{10} - \frac{1}{64} a^{8} + \frac{1}{32} a^{6} - \frac{1}{32} a^{4} + \frac{25}{64} a^{2} - \frac{25}{64}$, $\frac{1}{64} a^{11} - \frac{1}{64} a^{8} + \frac{1}{32} a^{7} - \frac{1}{32} a^{4} + \frac{25}{64} a^{3} - \frac{25}{64}$, $\frac{1}{28544} a^{12} - \frac{1}{892} a^{10} + \frac{339}{28544} a^{8} + \frac{31}{446} a^{6} - \frac{1285}{28544} a^{4} + \frac{1}{4} a^{2} - \frac{9}{128}$, $\frac{1}{57088} a^{13} - \frac{1}{57088} a^{12} + \frac{207}{28544} a^{11} - \frac{207}{28544} a^{10} - \frac{107}{57088} a^{9} + \frac{107}{57088} a^{8} + \frac{719}{14272} a^{7} - \frac{719}{14272} a^{6} - \frac{2177}{57088} a^{5} + \frac{2177}{57088} a^{4} - \frac{23}{128} a^{3} + \frac{23}{128} a^{2} + \frac{69}{256} a - \frac{69}{256}$, $\frac{1}{617178368} a^{14} - \frac{251}{32483072} a^{12} - \frac{4155545}{617178368} a^{10} - \frac{9407075}{617178368} a^{8} - \frac{22410205}{617178368} a^{6} - \frac{42994363}{617178368} a^{4} + \frac{238723}{2767616} a^{2} + \frac{648409}{2767616}$, $\frac{1}{617178368} a^{15} - \frac{251}{32483072} a^{13} - \frac{4155545}{617178368} a^{11} + \frac{236337}{617178368} a^{9} - \frac{1}{64} a^{8} - \frac{22410205}{617178368} a^{7} - \frac{23707539}{617178368} a^{5} - \frac{1}{32} a^{4} + \frac{238723}{2767616} a^{3} - \frac{1038107}{2767616} a - \frac{25}{64}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29489199.4911 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 768 |
| The 31 conjugacy class representatives for t16n1048 |
| Character table for t16n1048 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.14272.1, 8.8.3259039744.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 223 | Data not computed | ||||||