Normalized defining polynomial
\( x^{16} - 8 x^{15} + 20 x^{14} - 36 x^{13} + 92 x^{12} + 524 x^{11} - 4928 x^{10} + 12816 x^{9} - 7767 x^{8} - 7596 x^{7} + 124248 x^{6} - 787088 x^{5} + 1352106 x^{4} + 983556 x^{3} - 5330000 x^{2} + 5566660 x - 1893457 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2163460585448341410282471424=2^{44}\cdot 223^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 223$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{9109020421787145195419673815811659987392489} a^{15} - \frac{2610479474833484710350612133984126033622953}{9109020421787145195419673815811659987392489} a^{14} + \frac{3279790012809768173158185109502765117129228}{9109020421787145195419673815811659987392489} a^{13} - \frac{447361341261921115962088585562718412426949}{9109020421787145195419673815811659987392489} a^{12} - \frac{1695566639990949907380786181682587785467770}{9109020421787145195419673815811659987392489} a^{11} - \frac{1284955471542472329056601731105091901174302}{9109020421787145195419673815811659987392489} a^{10} - \frac{2396408693629940937271045486857798067302242}{9109020421787145195419673815811659987392489} a^{9} - \frac{4381130234330021668676341221750733750955441}{9109020421787145195419673815811659987392489} a^{8} - \frac{2227603071743948009260982619451604450616729}{9109020421787145195419673815811659987392489} a^{7} - \frac{3722293979006575349460853271853583563886265}{9109020421787145195419673815811659987392489} a^{6} + \frac{3200490833887512751119450963021576781011913}{9109020421787145195419673815811659987392489} a^{5} + \frac{1086672261219361401304457514156349679790874}{9109020421787145195419673815811659987392489} a^{4} + \frac{818096369495258393308469955778713808471090}{9109020421787145195419673815811659987392489} a^{3} - \frac{3004713778911594793950647919193609844755291}{9109020421787145195419673815811659987392489} a^{2} - \frac{2406404308280850430500824037600166853184167}{9109020421787145195419673815811659987392489} a - \frac{1930988265065864494527838190712063957096715}{9109020421787145195419673815811659987392489}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 67005150.0329 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3:S_4.C_2$ (as 16T764):
| A solvable group of order 384 |
| The 23 conjugacy class representatives for $C_2^3:S_4.C_2$ |
| Character table for $C_2^3:S_4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.14272.1, 8.8.3259039744.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 223 | Data not computed | ||||||