Properties

Label 16.8.21618669993...0000.2
Degree $16$
Signature $[8, 4]$
Discriminant $2^{8}\cdot 5^{11}\cdot 11^{7}\cdot 31^{6}$
Root discriminant $44.25$
Ramified primes $2, 5, 11, 31$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1774

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-209, 176, 2980, 4229, 511, -3768, -5575, -3300, -369, 131, 170, 123, 10, 5, -7, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 - 7*x^14 + 5*x^13 + 10*x^12 + 123*x^11 + 170*x^10 + 131*x^9 - 369*x^8 - 3300*x^7 - 5575*x^6 - 3768*x^5 + 511*x^4 + 4229*x^3 + 2980*x^2 + 176*x - 209)
 
gp: K = bnfinit(x^16 - 3*x^15 - 7*x^14 + 5*x^13 + 10*x^12 + 123*x^11 + 170*x^10 + 131*x^9 - 369*x^8 - 3300*x^7 - 5575*x^6 - 3768*x^5 + 511*x^4 + 4229*x^3 + 2980*x^2 + 176*x - 209, 1)
 

Normalized defining polynomial

\( x^{16} - 3 x^{15} - 7 x^{14} + 5 x^{13} + 10 x^{12} + 123 x^{11} + 170 x^{10} + 131 x^{9} - 369 x^{8} - 3300 x^{7} - 5575 x^{6} - 3768 x^{5} + 511 x^{4} + 4229 x^{3} + 2980 x^{2} + 176 x - 209 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(216186699934705637500000000=2^{8}\cdot 5^{11}\cdot 11^{7}\cdot 31^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $44.25$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{18} a^{14} - \frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{6} a^{11} - \frac{1}{18} a^{10} - \frac{7}{18} a^{9} + \frac{4}{9} a^{8} + \frac{4}{9} a^{7} - \frac{1}{6} a^{6} + \frac{7}{18} a^{5} - \frac{1}{6} a^{4} - \frac{2}{9} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a + \frac{1}{18}$, $\frac{1}{4408145995014617767965594} a^{15} - \frac{34884961534407848862743}{2204072997507308883982797} a^{14} - \frac{122020413494433572256424}{734690999169102961327599} a^{13} - \frac{248894752636469046380047}{4408145995014617767965594} a^{12} + \frac{1135651124675719289275373}{4408145995014617767965594} a^{11} + \frac{1645468067585019166619119}{4408145995014617767965594} a^{10} + \frac{838105907521953358313657}{2204072997507308883982797} a^{9} - \frac{466738556674702021886086}{2204072997507308883982797} a^{8} - \frac{2084746375885137452906965}{4408145995014617767965594} a^{7} - \frac{1091771200038501408852797}{4408145995014617767965594} a^{6} - \frac{1188996400438336834424399}{4408145995014617767965594} a^{5} + \frac{580022721302461429008367}{2204072997507308883982797} a^{4} + \frac{821826199961060748247714}{2204072997507308883982797} a^{3} - \frac{545649386504137718924429}{1469381998338205922655198} a^{2} - \frac{1205787922592131405090973}{4408145995014617767965594} a - \frac{781859630787807029971219}{2204072997507308883982797}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 28299307.5291 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1774:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 16384
The 130 conjugacy class representatives for t16n1774 are not computed
Character table for t16n1774 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.8525.1, 8.8.123911940625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.8.8.7$x^{8} + 2 x^{6} + 4 x^{5} + 16$$2$$4$$8$$((C_8 : C_2):C_2):C_2$$[2, 2, 2, 2]^{4}$
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.7.1$x^{8} - 5$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$
$11$11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.4.3.2$x^{4} - 11$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
11.4.3.2$x^{4} - 11$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
31Data not computed