Normalized defining polynomial
\( x^{16} - 2 x^{15} - 75 x^{14} - 28 x^{13} + 2087 x^{12} + 12539 x^{11} - 23154 x^{10} - 528593 x^{9} - 51363 x^{8} + 8895081 x^{7} + 3374410 x^{6} - 64805612 x^{5} - 20086013 x^{4} + 187459777 x^{3} - 9786670 x^{2} - 246301289 x + 10314571 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21524562403589040109288671558095801=7^{12}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $139.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5021837178142711871654324614589110726172743044245762382771127} a^{15} - \frac{2294568093222711063791058356847846637780145449744376790469292}{5021837178142711871654324614589110726172743044245762382771127} a^{14} + \frac{1165409136165317206137145921591235372919799296131559645639065}{5021837178142711871654324614589110726172743044245762382771127} a^{13} - \frac{303484936209502557010580010597710497715337800648323144571284}{5021837178142711871654324614589110726172743044245762382771127} a^{12} - \frac{1185687086403359419090614641689218203685981287241469262072815}{5021837178142711871654324614589110726172743044245762382771127} a^{11} + \frac{1987927152211137081775816059134064158512329776538010444221832}{5021837178142711871654324614589110726172743044245762382771127} a^{10} + \frac{203186707287371726346059245121616350656007070875000303384146}{5021837178142711871654324614589110726172743044245762382771127} a^{9} + \frac{396542765454808394393695261017856943292721315614972696773744}{5021837178142711871654324614589110726172743044245762382771127} a^{8} + \frac{241507872304326837233174494821181664961074694311934555904206}{5021837178142711871654324614589110726172743044245762382771127} a^{7} - \frac{360910816394853011424490409008566002615567146234938102773357}{5021837178142711871654324614589110726172743044245762382771127} a^{6} + \frac{1149766905170769383157993702891387615473747428326573300105807}{5021837178142711871654324614589110726172743044245762382771127} a^{5} + \frac{182042786441805355787742049179020498715727569970203681354712}{5021837178142711871654324614589110726172743044245762382771127} a^{4} + \frac{169148752709689022418575945871594504977392854910857723656025}{5021837178142711871654324614589110726172743044245762382771127} a^{3} + \frac{2049859238121182821342881823610833226836366480568386654142023}{5021837178142711871654324614589110726172743044245762382771127} a^{2} + \frac{1910246469035891956635655180986105743876943889879657981012577}{5021837178142711871654324614589110726172743044245762382771127} a - \frac{2129534193509310224159550244617055687187583942969444795198177}{5021837178142711871654324614589110726172743044245762382771127}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 105232700409 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.467605011588281.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 41 | Data not computed | ||||||