Normalized defining polynomial
\( x^{16} + 16 x^{14} - 428 x^{12} - 1824 x^{10} + 17966 x^{8} + 22224 x^{6} - 62940 x^{4} + 16576 x^{2} + 2777 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21367369203669531951904323534848=2^{24}\cdot 2777^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4}$, $\frac{1}{4} a^{5} - \frac{1}{4} a$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{8} a^{2} + \frac{1}{8}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{8} a^{3} + \frac{1}{8} a$, $\frac{1}{16} a^{8} - \frac{1}{8} a^{4} + \frac{1}{16}$, $\frac{1}{32} a^{9} - \frac{1}{32} a^{8} - \frac{1}{16} a^{5} + \frac{1}{16} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{9}{32} a + \frac{7}{32}$, $\frac{1}{32} a^{10} - \frac{1}{32} a^{8} - \frac{1}{16} a^{6} + \frac{1}{16} a^{4} + \frac{1}{32} a^{2} - \frac{1}{32}$, $\frac{1}{64} a^{11} - \frac{1}{64} a^{10} - \frac{1}{64} a^{9} + \frac{1}{64} a^{8} - \frac{1}{32} a^{7} + \frac{1}{32} a^{6} - \frac{3}{32} a^{5} + \frac{3}{32} a^{4} - \frac{15}{64} a^{3} + \frac{15}{64} a^{2} + \frac{23}{64} a - \frac{23}{64}$, $\frac{1}{22976} a^{12} + \frac{137}{11488} a^{10} - \frac{377}{22976} a^{8} + \frac{51}{5744} a^{6} - \frac{1601}{22976} a^{4} - \frac{2527}{11488} a^{2} - \frac{2919}{22976}$, $\frac{1}{45952} a^{13} - \frac{1}{45952} a^{12} + \frac{137}{22976} a^{11} - \frac{137}{22976} a^{10} - \frac{377}{45952} a^{9} + \frac{377}{45952} a^{8} - \frac{667}{11488} a^{7} + \frac{667}{11488} a^{6} - \frac{4473}{45952} a^{5} + \frac{4473}{45952} a^{4} + \frac{4653}{22976} a^{3} - \frac{4653}{22976} a^{2} - \frac{11535}{45952} a + \frac{11535}{45952}$, $\frac{1}{56359990144} a^{14} - \frac{1084203}{56359990144} a^{12} + \frac{14193873}{1943447936} a^{10} + \frac{1033930217}{56359990144} a^{8} - \frac{312110733}{56359990144} a^{6} - \frac{3692319873}{56359990144} a^{4} - \frac{2612191329}{56359990144} a^{2} - \frac{15568556669}{56359990144}$, $\frac{1}{112719980288} a^{15} - \frac{1}{112719980288} a^{14} - \frac{1084203}{112719980288} a^{13} + \frac{1084203}{112719980288} a^{12} + \frac{14193873}{3886895872} a^{11} - \frac{14193873}{3886895872} a^{10} + \frac{1033930217}{112719980288} a^{9} - \frac{1033930217}{112719980288} a^{8} + \frac{6732888035}{112719980288} a^{7} - \frac{6732888035}{112719980288} a^{6} + \frac{3352678895}{112719980288} a^{5} - \frac{3352678895}{112719980288} a^{4} + \frac{18522804975}{112719980288} a^{3} - \frac{18522804975}{112719980288} a^{2} + \frac{5566439635}{112719980288} a - \frac{5566439635}{112719980288}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6291105028.27 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 41 conjugacy class representatives for t16n1691 |
| Character table for t16n1691 is not computed |
Intermediate fields
| 4.4.2777.1, 8.8.5482360686848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.12.18.43 | $x^{12} + 8 x^{11} + 4 x^{10} - 4 x^{7} - 4 x^{6} + 8 x^{5} + 4 x^{4} + 8 x^{3} + 8$ | $4$ | $3$ | $18$ | 12T51 | $[2, 2, 2, 2]^{6}$ | |
| 2777 | Data not computed | ||||||