Normalized defining polynomial
\( x^{16} - 1139 x^{14} + 333982 x^{12} + 20490185 x^{10} - 14600815653 x^{8} - 306906491051 x^{6} + 160261082893754 x^{4} + 10786789982952529 x^{2} + 191415273175747673 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2112231025384252423772630322104776589312=2^{16}\cdot 13^{2}\cdot 17^{15}\cdot 2857^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $286.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17, 2857$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2857} a^{10} - \frac{1139}{2857} a^{8} - \frac{287}{2857} a^{6} - \frac{219}{2857} a^{4} - \frac{16}{2857} a^{2}$, $\frac{1}{2857} a^{11} - \frac{1139}{2857} a^{9} - \frac{287}{2857} a^{7} - \frac{219}{2857} a^{5} - \frac{16}{2857} a^{3}$, $\frac{1}{8162449} a^{12} - \frac{1139}{8162449} a^{10} + \frac{333982}{8162449} a^{8} - \frac{3997162}{8162449} a^{6} + \frac{1805608}{8162449} a^{4} + \frac{557}{2857} a^{2}$, $\frac{1}{8162449} a^{13} - \frac{1139}{8162449} a^{11} + \frac{333982}{8162449} a^{9} - \frac{3997162}{8162449} a^{7} + \frac{1805608}{8162449} a^{5} + \frac{557}{2857} a^{3}$, $\frac{1}{249493744450750962635700169220329066393664876884879} a^{14} - \frac{422789438056122618074268079500173648236025}{249493744450750962635700169220329066393664876884879} a^{12} - \frac{31064932073133485442764764492627669640930013457}{249493744450750962635700169220329066393664876884879} a^{10} - \frac{72844103203641624689931061210847248623943779784620}{249493744450750962635700169220329066393664876884879} a^{8} + \frac{84684249538311660854856364914279513365879029758633}{249493744450750962635700169220329066393664876884879} a^{6} + \frac{22014834329946677163557264137376973047004536702}{87327176916608667355862852369733659920778745847} a^{4} + \frac{12692751541845467628400334039190936751737945}{30566040222824174783291162887551158530199071} a^{2} + \frac{17924812858469224123964309490234623293}{822973000802998701792928647251047589731}$, $\frac{1}{249493744450750962635700169220329066393664876884879} a^{15} - \frac{422789438056122618074268079500173648236025}{249493744450750962635700169220329066393664876884879} a^{13} - \frac{31064932073133485442764764492627669640930013457}{249493744450750962635700169220329066393664876884879} a^{11} - \frac{72844103203641624689931061210847248623943779784620}{249493744450750962635700169220329066393664876884879} a^{9} + \frac{84684249538311660854856364914279513365879029758633}{249493744450750962635700169220329066393664876884879} a^{7} + \frac{22014834329946677163557264137376973047004536702}{87327176916608667355862852369733659920778745847} a^{5} + \frac{12692751541845467628400334039190936751737945}{30566040222824174783291162887551158530199071} a^{3} + \frac{17924812858469224123964309490234623293}{822973000802998701792928647251047589731} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4898213901570 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | $16$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.5 | $x^{8} + 2 x^{7} + 8 x^{2} + 16$ | $2$ | $4$ | $8$ | $C_8:C_2$ | $[2, 2]^{4}$ |
| 2.8.8.5 | $x^{8} + 2 x^{7} + 8 x^{2} + 16$ | $2$ | $4$ | $8$ | $C_8:C_2$ | $[2, 2]^{4}$ | |
| $13$ | 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17 | Data not computed | ||||||
| 2857 | Data not computed | ||||||