Normalized defining polynomial
\( x^{16} - 391 x^{14} - 250427 x^{12} + 116010414 x^{10} - 1968018753 x^{8} - 2533040427360 x^{6} + 74428132138742 x^{4} + 10822866203631300 x^{2} + 191415273175747673 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2112231025384252423772630322104776589312=2^{16}\cdot 13^{2}\cdot 17^{15}\cdot 2857^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $286.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17, 2857$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2857} a^{10} - \frac{391}{2857} a^{8} + \frac{989}{2857} a^{6} - \frac{928}{2857} a^{4} - \frac{16}{2857} a^{2}$, $\frac{1}{2857} a^{11} - \frac{391}{2857} a^{9} + \frac{989}{2857} a^{7} - \frac{928}{2857} a^{5} - \frac{16}{2857} a^{3}$, $\frac{1}{8162449} a^{12} - \frac{391}{8162449} a^{10} - \frac{250427}{8162449} a^{8} + \frac{1736128}{8162449} a^{6} - \frac{868544}{8162449} a^{4} - \frac{1384}{2857} a^{2}$, $\frac{1}{8162449} a^{13} - \frac{391}{8162449} a^{11} - \frac{250427}{8162449} a^{9} + \frac{1736128}{8162449} a^{7} - \frac{868544}{8162449} a^{5} - \frac{1384}{2857} a^{3}$, $\frac{1}{76228878535903222692069050420548441922889078242550533} a^{14} + \frac{3736421045266131011526743673955583163065906097}{76228878535903222692069050420548441922889078242550533} a^{12} - \frac{9730808609436471550434710898215879315336352589038}{76228878535903222692069050420548441922889078242550533} a^{10} - \frac{2284867158365068247477821611510779093703203800751626}{5863759887377170976313003878503726301760698326350041} a^{8} + \frac{24725152217911502391216015976490612514811451320779974}{76228878535903222692069050420548441922889078242550533} a^{6} - \frac{11296755958572915507909726579410354685487647153316}{26681441559644110147731554224903199833002827526269} a^{4} - \frac{1889591813452721616306631172503577878990974098}{9338971494450161059759031930312635573329656117} a^{2} - \frac{108636312226850983756677171482709501404403}{251446420248516762062384748130439018155937}$, $\frac{1}{76228878535903222692069050420548441922889078242550533} a^{15} + \frac{3736421045266131011526743673955583163065906097}{76228878535903222692069050420548441922889078242550533} a^{13} - \frac{9730808609436471550434710898215879315336352589038}{76228878535903222692069050420548441922889078242550533} a^{11} - \frac{2284867158365068247477821611510779093703203800751626}{5863759887377170976313003878503726301760698326350041} a^{9} + \frac{24725152217911502391216015976490612514811451320779974}{76228878535903222692069050420548441922889078242550533} a^{7} - \frac{11296755958572915507909726579410354685487647153316}{26681441559644110147731554224903199833002827526269} a^{5} - \frac{1889591813452721616306631172503577878990974098}{9338971494450161059759031930312635573329656117} a^{3} - \frac{108636312226850983756677171482709501404403}{251446420248516762062384748130439018155937} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4662257530870 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | $16$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.5 | $x^{8} + 2 x^{7} + 8 x^{2} + 16$ | $2$ | $4$ | $8$ | $C_8:C_2$ | $[2, 2]^{4}$ |
| 2.8.8.5 | $x^{8} + 2 x^{7} + 8 x^{2} + 16$ | $2$ | $4$ | $8$ | $C_8:C_2$ | $[2, 2]^{4}$ | |
| $13$ | 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17 | Data not computed | ||||||
| 2857 | Data not computed | ||||||