Properties

Label 16.8.20231264034...0000.1
Degree $16$
Signature $[8, 4]$
Discriminant $2^{16}\cdot 3^{12}\cdot 5^{10}\cdot 29^{6}$
Root discriminant $44.07$
Ramified primes $2, 3, 5, 29$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^3.C_2^4.C_2$ (as 16T456)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-359, -3896, -14377, -20268, -1782, 22262, 22537, 9658, 1465, 180, 627, 460, 60, -60, -17, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 17*x^14 - 60*x^13 + 60*x^12 + 460*x^11 + 627*x^10 + 180*x^9 + 1465*x^8 + 9658*x^7 + 22537*x^6 + 22262*x^5 - 1782*x^4 - 20268*x^3 - 14377*x^2 - 3896*x - 359)
 
gp: K = bnfinit(x^16 - 2*x^15 - 17*x^14 - 60*x^13 + 60*x^12 + 460*x^11 + 627*x^10 + 180*x^9 + 1465*x^8 + 9658*x^7 + 22537*x^6 + 22262*x^5 - 1782*x^4 - 20268*x^3 - 14377*x^2 - 3896*x - 359, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} - 17 x^{14} - 60 x^{13} + 60 x^{12} + 460 x^{11} + 627 x^{10} + 180 x^{9} + 1465 x^{8} + 9658 x^{7} + 22537 x^{6} + 22262 x^{5} - 1782 x^{4} - 20268 x^{3} - 14377 x^{2} - 3896 x - 359 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(202312640342759040000000000=2^{16}\cdot 3^{12}\cdot 5^{10}\cdot 29^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $44.07$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{118} a^{14} + \frac{23}{118} a^{13} - \frac{14}{59} a^{12} + \frac{20}{59} a^{11} - \frac{55}{118} a^{10} + \frac{6}{59} a^{9} - \frac{1}{118} a^{8} - \frac{33}{118} a^{7} - \frac{13}{118} a^{6} - \frac{3}{118} a^{5} + \frac{49}{118} a^{4} + \frac{26}{59} a^{3} + \frac{9}{118} a^{2} + \frac{24}{59} a + \frac{8}{59}$, $\frac{1}{219505788214227743942007401086} a^{15} + \frac{66708021793486799892801577}{109752894107113871971003700543} a^{14} + \frac{18055578981250364929707389371}{109752894107113871971003700543} a^{13} + \frac{3247906482880272777491234385}{15678984872444838853000528649} a^{12} + \frac{51972636583689721781392458614}{109752894107113871971003700543} a^{11} + \frac{52618986536885201197201131237}{219505788214227743942007401086} a^{10} + \frac{1499730306989477068005658604}{109752894107113871971003700543} a^{9} - \frac{100238662642230486029062818923}{219505788214227743942007401086} a^{8} + \frac{28394780108187378521425908087}{219505788214227743942007401086} a^{7} + \frac{32059695388982345251451215136}{109752894107113871971003700543} a^{6} + \frac{20309875496349243764021797670}{109752894107113871971003700543} a^{5} - \frac{95852293709141410599719184131}{219505788214227743942007401086} a^{4} + \frac{40909472077289424459389261475}{219505788214227743942007401086} a^{3} - \frac{1279629245270869208414264533}{109752894107113871971003700543} a^{2} + \frac{105767273718155985903404704997}{219505788214227743942007401086} a + \frac{39835808217596773367734209509}{219505788214227743942007401086}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 18779877.1816 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3.C_2^4.C_2$ (as 16T456):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 46 conjugacy class representatives for $C_2^3.C_2^4.C_2$
Character table for $C_2^3.C_2^4.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{15}) \), 4.4.104400.1, \(\Q(\sqrt{3}, \sqrt{5})\), 4.4.725.1, 8.8.10899360000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
3Data not computed
$5$5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$29$29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.8.6.2$x^{8} + 145 x^{4} + 7569$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$