Normalized defining polynomial
\( x^{16} - 1680 x^{14} - 84015162 x^{12} + 68564686032 x^{10} + 1804162994563848 x^{8} + 135885537776647872 x^{6} - 617059300053864361194 x^{4} + 67888704460353159384144 x^{2} + 12477755900910335205401361 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1992553742188905474600208423051202739081327305267455857076982769849672400896=2^{56}\cdot 3^{14}\cdot 13^{6}\cdot 29^{8}\cdot 107^{8}\cdot 139^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50{,}840.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 29, 107, 139$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8}$, $\frac{1}{3} a^{9}$, $\frac{1}{3} a^{10}$, $\frac{1}{3} a^{11}$, $\frac{1}{1224033} a^{12} - \frac{2893}{1224033} a^{10} - \frac{104170}{1224033} a^{8} + \frac{56362}{408011} a^{6} + \frac{175232}{408011} a^{4} + \frac{122047}{408011} a^{2} - \frac{80683}{408011}$, $\frac{1}{1224033} a^{13} - \frac{2893}{1224033} a^{11} - \frac{104170}{1224033} a^{9} + \frac{56362}{408011} a^{7} + \frac{175232}{408011} a^{5} + \frac{122047}{408011} a^{3} - \frac{80683}{408011} a$, $\frac{1}{701156655725811966685499413809463729044127137165988541556091121763495162717} a^{14} - \frac{21607711715185131358452339879295008712208646151528622806389400765889}{233718885241937322228499804603154576348042379055329513852030373921165054239} a^{12} + \frac{28656127395545972647562722983333004772487268806919766163743295736324791029}{233718885241937322228499804603154576348042379055329513852030373921165054239} a^{10} - \frac{33570255132030748093381111059503735152884801110552945440582858595518051684}{233718885241937322228499804603154576348042379055329513852030373921165054239} a^{8} - \frac{99216613472433519342378865846057805300046921955494329946499531237429842176}{233718885241937322228499804603154576348042379055329513852030373921165054239} a^{6} - \frac{15701103835637526500202343655714422699869184812983517183107096369900095426}{77906295080645774076166601534384858782680793018443171284010124640388351413} a^{4} + \frac{24002896630715012258349669893077148598248167598788083030953174392379961083}{77906295080645774076166601534384858782680793018443171284010124640388351413} a^{2} + \frac{7978562151137330948074163739253753751009980398858744874171577809961035}{5992791929280444159705123194952681444821599462957167021846932664645257801}$, $\frac{1}{63506575781600782623173465551413128197627751139125526180977467111752252696924434138157} a^{15} - \frac{1803767771503108055226502470664799708827849739167267891018458262041800563797298}{7056286197955642513685940616823680910847527904347280686775274123528028077436048237573} a^{13} + \frac{3058700049587142893081612310015560866807342358878423479269442526518982215698316976895}{21168858593866927541057821850471042732542583713041842060325822370584084232308144712719} a^{11} + \frac{3205789047289236363364251570012574210489510982614511851252679306384985251138586740069}{21168858593866927541057821850471042732542583713041842060325822370584084232308144712719} a^{9} + \frac{9874465040884880569266907215011879980753362568312389748672635626020628147076507133576}{21168858593866927541057821850471042732542583713041842060325822370584084232308144712719} a^{7} - \frac{1388895842907633177911314344744236026504746748743436455424730367998484567141746730983}{7056286197955642513685940616823680910847527904347280686775274123528028077436048237573} a^{5} - \frac{2221616061704001753912953153611014861134331634089178255638037228113898569521772477687}{7056286197955642513685940616823680910847527904347280686775274123528028077436048237573} a^{3} - \frac{251492858711066065263610748420645370348956709978649205745333232760965207558777774198}{542791245996587885668149278217206223911348300334406206675021086425232929033542172121} a$
Class group and class number
Not computed
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.C_2^5.C_2$ (as 16T486):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^2.C_2^5.C_2$ |
| Character table for $C_2^2.C_2^5.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 4.4.1393025246413632.1, 4.4.33432605913927168.1, 4.4.13824.1, 8.8.4470956552783831393152593634000896.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $13$ | 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $107$ | 107.4.2.1 | $x^{4} + 963 x^{2} + 286225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 107.4.2.1 | $x^{4} + 963 x^{2} + 286225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 107.8.4.1 | $x^{8} + 45796 x^{4} - 1225043 x^{2} + 524318404$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $139$ | 139.4.2.1 | $x^{4} + 417 x^{2} + 77284$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 139.4.2.1 | $x^{4} + 417 x^{2} + 77284$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 139.4.2.1 | $x^{4} + 417 x^{2} + 77284$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 139.4.2.1 | $x^{4} + 417 x^{2} + 77284$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |