Normalized defining polynomial
\( x^{16} - 8 x^{15} + 30 x^{14} - 70 x^{13} - 32134 x^{12} + 193350 x^{11} - 2198790 x^{10} + 9220860 x^{9} - 10053370 x^{8} - 12983686 x^{7} + 814005396 x^{6} - 2359973708 x^{5} - 3456857577 x^{4} + 10814479334 x^{3} - 15509537492 x^{2} + 9713737864 x - 823982021 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19719055677142144882125300632796548005703977=19^{12}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $508.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{38} a^{4} - \frac{1}{19} a^{3} - \frac{4}{19} a^{2} + \frac{9}{38} a - \frac{13}{38}$, $\frac{1}{38} a^{5} - \frac{6}{19} a^{3} - \frac{7}{38} a^{2} + \frac{5}{38} a + \frac{6}{19}$, $\frac{1}{38} a^{6} + \frac{7}{38} a^{3} - \frac{15}{38} a^{2} + \frac{3}{19} a - \frac{2}{19}$, $\frac{1}{38} a^{7} - \frac{1}{38} a^{3} - \frac{7}{19} a^{2} + \frac{9}{38} a + \frac{15}{38}$, $\frac{1}{2888} a^{8} - \frac{1}{722} a^{7} + \frac{13}{1444} a^{6} + \frac{3}{722} a^{5} - \frac{9}{722} a^{4} - \frac{369}{1444} a^{3} - \frac{1155}{2888} a^{2} + \frac{453}{1444} a - \frac{1389}{2888}$, $\frac{1}{2888} a^{9} + \frac{5}{1444} a^{7} - \frac{9}{722} a^{6} + \frac{3}{722} a^{5} + \frac{15}{1444} a^{4} - \frac{1219}{2888} a^{3} - \frac{33}{1444} a^{2} + \frac{867}{2888} a + \frac{131}{722}$, $\frac{1}{54872} a^{10} - \frac{5}{54872} a^{9} - \frac{3}{54872} a^{8} + \frac{21}{27436} a^{7} - \frac{73}{27436} a^{6} + \frac{135}{27436} a^{5} - \frac{293}{54872} a^{4} + \frac{195}{54872} a^{3} + \frac{6827}{13718} a^{2} - \frac{27369}{54872} a + \frac{17033}{54872}$, $\frac{1}{54872} a^{11} - \frac{9}{54872} a^{9} + \frac{1}{6859} a^{8} + \frac{165}{27436} a^{7} - \frac{97}{27436} a^{6} - \frac{387}{54872} a^{5} - \frac{2}{6859} a^{4} - \frac{2073}{13718} a^{3} + \frac{4283}{27436} a^{2} - \frac{9365}{54872} a - \frac{1417}{6859}$, $\frac{1}{438976} a^{12} + \frac{1}{219488} a^{11} - \frac{17}{438976} a^{9} - \frac{61}{438976} a^{8} + \frac{343}{54872} a^{7} - \frac{341}{438976} a^{6} + \frac{1189}{109744} a^{5} - \frac{1917}{438976} a^{4} - \frac{195237}{438976} a^{3} + \frac{216299}{438976} a^{2} + \frac{187707}{438976} a + \frac{6823}{23104}$, $\frac{1}{17998016} a^{13} + \frac{7}{8999008} a^{12} + \frac{9}{1124876} a^{11} + \frac{79}{17998016} a^{10} + \frac{607}{17998016} a^{9} + \frac{139}{4499504} a^{8} + \frac{224571}{17998016} a^{7} + \frac{947}{118408} a^{6} - \frac{158101}{17998016} a^{5} - \frac{29409}{17998016} a^{4} + \frac{7332239}{17998016} a^{3} + \frac{3520159}{17998016} a^{2} - \frac{3394959}{17998016} a - \frac{1384389}{4499504}$, $\frac{1}{44502320958582495324352} a^{14} - \frac{7}{44502320958582495324352} a^{13} + \frac{6008173322471921}{11125580239645623831088} a^{12} - \frac{144196159739326013}{44502320958582495324352} a^{11} - \frac{56538673404570555}{11125580239645623831088} a^{10} + \frac{2452571599035232719}{44502320958582495324352} a^{9} - \frac{3008956937941732435}{44502320958582495324352} a^{8} - \frac{4265759599577052431}{44502320958582495324352} a^{7} - \frac{99402790852963865695}{44502320958582495324352} a^{6} + \frac{20314093101905740241}{2781395059911405957772} a^{5} - \frac{113903713415014053415}{22251160479291247662176} a^{4} - \frac{48384618666786756147}{22251160479291247662176} a^{3} - \frac{1004245485415735538783}{11125580239645623831088} a^{2} + \frac{4121104370147567068797}{44502320958582495324352} a - \frac{10376462216702750662589}{22251160479291247662176}$, $\frac{1}{3159664788059357168028992} a^{15} + \frac{7}{789916197014839292007248} a^{14} + \frac{83375662148564967}{3159664788059357168028992} a^{13} + \frac{311218807825338995}{3159664788059357168028992} a^{12} + \frac{2461346656752945141}{3159664788059357168028992} a^{11} + \frac{13823622201465551619}{3159664788059357168028992} a^{10} + \frac{79904385066402973067}{1579832394029678584014496} a^{9} - \frac{594044796084183331}{789916197014839292007248} a^{8} + \frac{2082572760043758592811}{789916197014839292007248} a^{7} + \frac{34237210481508353027407}{3159664788059357168028992} a^{6} + \frac{1064619604021736759285}{1579832394029678584014496} a^{5} - \frac{1243870317451477494579}{789916197014839292007248} a^{4} + \frac{381359177744618049720567}{1579832394029678584014496} a^{3} + \frac{1497794920409933751287885}{3159664788059357168028992} a^{2} + \frac{110070528405134176968393}{3159664788059357168028992} a + \frac{666272300372490310672443}{1579832394029678584014496}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4792824524050000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.8.1439708022407240137.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | R | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | $16$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.8.6.3 | $x^{8} - 19 x^{4} + 722$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ |
| 19.8.6.3 | $x^{8} - 19 x^{4} + 722$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |
| 73 | Data not computed | ||||||