Normalized defining polynomial
\( x^{16} - 4 x^{15} - 29 x^{14} - 1560 x^{13} - 49358 x^{12} + 43368 x^{11} - 2592178 x^{10} - 4534424 x^{9} + 83558589 x^{8} + 499725828 x^{7} + 5448645279 x^{6} + 40146705456 x^{5} + 206054540288 x^{4} + 621629449624 x^{3} + 721476532032 x^{2} - 243288205952 x - 716371879936 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(195243657193163639221629075064503172225659097=23^{12}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $586.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{4}$, $\frac{1}{32} a^{7} + \frac{1}{32} a^{6} - \frac{1}{32} a^{5} - \frac{1}{32} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{736} a^{8} - \frac{1}{368} a^{7} - \frac{7}{184} a^{6} + \frac{19}{368} a^{5} + \frac{75}{736} a^{4} + \frac{9}{184} a^{3} - \frac{11}{46} a^{2} + \frac{35}{92} a + \frac{1}{23}$, $\frac{1}{1472} a^{9} + \frac{7}{736} a^{7} - \frac{1}{23} a^{6} - \frac{79}{1472} a^{5} - \frac{17}{184} a^{4} - \frac{9}{46} a^{3} + \frac{37}{184} a^{2} - \frac{8}{23} a + \frac{1}{23}$, $\frac{1}{5888} a^{10} + \frac{1}{5888} a^{9} + \frac{1}{2944} a^{8} - \frac{13}{2944} a^{7} - \frac{175}{5888} a^{6} + \frac{65}{5888} a^{5} + \frac{129}{1472} a^{4} + \frac{39}{736} a^{3} + \frac{53}{736} a^{2} - \frac{27}{184} a - \frac{7}{23}$, $\frac{1}{47104} a^{11} - \frac{1}{23552} a^{10} + \frac{15}{47104} a^{9} + \frac{63}{47104} a^{7} + \frac{71}{23552} a^{6} + \frac{1745}{47104} a^{5} - \frac{59}{512} a^{4} - \frac{85}{736} a^{3} + \frac{725}{5888} a^{2} - \frac{687}{1472} a - \frac{43}{92}$, $\frac{1}{47104} a^{12} + \frac{3}{47104} a^{10} - \frac{5}{23552} a^{9} - \frac{17}{47104} a^{8} + \frac{39}{11776} a^{7} + \frac{1381}{47104} a^{6} - \frac{1181}{23552} a^{5} - \frac{401}{5888} a^{4} - \frac{83}{5888} a^{3} - \frac{13}{2944} a^{2} + \frac{157}{736} a + \frac{13}{46}$, $\frac{1}{188416} a^{13} - \frac{1}{188416} a^{12} + \frac{1}{188416} a^{11} + \frac{7}{188416} a^{10} - \frac{21}{188416} a^{9} - \frac{5}{8192} a^{8} - \frac{1621}{188416} a^{7} - \frac{6699}{188416} a^{6} - \frac{1}{256} a^{5} + \frac{2283}{23552} a^{4} + \frac{5017}{23552} a^{3} + \frac{45}{2944} a^{2} + \frac{665}{1472} a - \frac{27}{92}$, $\frac{1}{24950800384} a^{14} + \frac{95}{194928128} a^{13} + \frac{2359}{1559425024} a^{12} + \frac{13945}{3118850048} a^{11} - \frac{178719}{12475400192} a^{10} - \frac{755029}{3118850048} a^{9} - \frac{2109351}{3118850048} a^{8} + \frac{491575}{48732032} a^{7} - \frac{943670363}{24950800384} a^{6} - \frac{21645205}{3118850048} a^{5} + \frac{85696797}{779712512} a^{4} + \frac{754287537}{3118850048} a^{3} - \frac{9204517}{389856256} a^{2} - \frac{90957839}{194928128} a - \frac{232225}{529696}$, $\frac{1}{29037869109510285771107710451142463082704062376312832} a^{15} - \frac{455017814093768421329141004361393254147209}{29037869109510285771107710451142463082704062376312832} a^{14} + \frac{230846563283949932938223410799119665152736113}{113429176209024553793389493949775246416812743657472} a^{13} - \frac{25868216566839392158642879949171325581705919987}{3629733638688785721388463806392807885338007797039104} a^{12} + \frac{13323601261904385060189641243519072920032584533}{14518934554755142885553855225571231541352031188156416} a^{11} - \frac{257039106393930443953824510355439002976127354101}{14518934554755142885553855225571231541352031188156416} a^{10} - \frac{64119438065078451009229917984335081242480830779}{453716704836098215173557975799100985667250974629888} a^{9} + \frac{2353479978713642860669221137754511596812438111429}{3629733638688785721388463806392807885338007797039104} a^{8} + \frac{402816046678496404694731053693603292354991218890485}{29037869109510285771107710451142463082704062376312832} a^{7} + \frac{319000422810451218857138416218600588024893489387323}{29037869109510285771107710451142463082704062376312832} a^{6} + \frac{183535388068357782842204233472162049614481378865349}{3629733638688785721388463806392807885338007797039104} a^{5} - \frac{148858244410179309891143748634302782410822920487171}{3629733638688785721388463806392807885338007797039104} a^{4} + \frac{333653747781765893474018247227931344963370551242831}{3629733638688785721388463806392807885338007797039104} a^{3} - \frac{82233021330898506862671329597827990206746771789117}{453716704836098215173557975799100985667250974629888} a^{2} + \frac{75204969384912862868700029630006723776719555007215}{226858352418049107586778987899550492833625487314944} a + \frac{5561639245747263395586029003184852607841982752999}{14178647026128069224173686743721905802101592957184}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6590405917470000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.8.3091515048982623577.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | $16$ | $16$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.8.6.3 | $x^{8} - 23 x^{4} + 3703$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ |
| 23.8.6.3 | $x^{8} - 23 x^{4} + 3703$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |
| 73 | Data not computed | ||||||