Properties

Label 16.8.19478396203...0000.1
Degree $16$
Signature $[8, 4]$
Discriminant $2^{8}\cdot 3^{8}\cdot 5^{12}\cdot 41^{6}$
Root discriminant $32.97$
Ramified primes $2, 3, 5, 41$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^3.C_2^4.C_2$ (as 16T467)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-29, -411, -1779, -2902, -703, 2724, 1637, -877, -369, 463, 232, -136, -63, 48, 1, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + x^14 + 48*x^13 - 63*x^12 - 136*x^11 + 232*x^10 + 463*x^9 - 369*x^8 - 877*x^7 + 1637*x^6 + 2724*x^5 - 703*x^4 - 2902*x^3 - 1779*x^2 - 411*x - 29)
 
gp: K = bnfinit(x^16 - 6*x^15 + x^14 + 48*x^13 - 63*x^12 - 136*x^11 + 232*x^10 + 463*x^9 - 369*x^8 - 877*x^7 + 1637*x^6 + 2724*x^5 - 703*x^4 - 2902*x^3 - 1779*x^2 - 411*x - 29, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{15} + x^{14} + 48 x^{13} - 63 x^{12} - 136 x^{11} + 232 x^{10} + 463 x^{9} - 369 x^{8} - 877 x^{7} + 1637 x^{6} + 2724 x^{5} - 703 x^{4} - 2902 x^{3} - 1779 x^{2} - 411 x - 29 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1947839620325062500000000=2^{8}\cdot 3^{8}\cdot 5^{12}\cdot 41^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $32.97$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{10} a^{12} - \frac{1}{2} a^{11} + \frac{2}{5} a^{9} - \frac{1}{2} a^{7} + \frac{1}{10} a^{6} - \frac{1}{2} a^{4} - \frac{1}{10} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{10}$, $\frac{1}{10} a^{13} - \frac{1}{2} a^{11} + \frac{2}{5} a^{10} - \frac{1}{2} a^{8} - \frac{2}{5} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a - \frac{1}{2}$, $\frac{1}{1230} a^{14} - \frac{29}{615} a^{13} + \frac{2}{615} a^{12} + \frac{183}{410} a^{11} - \frac{221}{615} a^{10} - \frac{103}{410} a^{9} - \frac{17}{615} a^{8} - \frac{284}{615} a^{7} + \frac{307}{615} a^{6} + \frac{122}{615} a^{5} + \frac{203}{1230} a^{4} + \frac{177}{410} a^{3} + \frac{87}{410} a^{2} + \frac{106}{615} a - \frac{311}{1230}$, $\frac{1}{7372944057934658850} a^{15} - \frac{1189491822149957}{7372944057934658850} a^{14} - \frac{10614745264143877}{7372944057934658850} a^{13} + \frac{547321225319287}{147458881158693177} a^{12} - \frac{2740380834521398723}{7372944057934658850} a^{11} - \frac{3548481691967382953}{7372944057934658850} a^{10} - \frac{356546590804629323}{1474588811586931770} a^{9} + \frac{740320493944473871}{2457648019311552950} a^{8} - \frac{1116356756202850489}{2457648019311552950} a^{7} + \frac{101103332202040754}{737294405793465885} a^{6} - \frac{1049340874010723869}{3686472028967329425} a^{5} - \frac{1088374287533444153}{7372944057934658850} a^{4} + \frac{29647204148140177}{98305920772462118} a^{3} + \frac{80502039262740079}{3686472028967329425} a^{2} + \frac{1603024076392508239}{3686472028967329425} a - \frac{3543062885336957389}{7372944057934658850}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1802620.16243 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3.C_2^4.C_2$ (as 16T467):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 46 conjugacy class representatives for $C_2^3.C_2^4.C_2$
Character table for $C_2^3.C_2^4.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 4.4.9225.1, 4.4.5125.1, 8.8.2127515625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
$3$3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$41$41.4.0.1$x^{4} - x + 17$$1$$4$$0$$C_4$$[\ ]^{4}$
41.4.2.2$x^{4} - 41 x^{2} + 20172$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
41.8.4.1$x^{8} + 57154 x^{4} - 68921 x^{2} + 816644929$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$