Normalized defining polynomial
\( x^{16} - x^{15} - 9 x^{14} - 17 x^{13} - 309 x^{12} - 6 x^{11} + 1767 x^{10} + 3098 x^{9} + 9218 x^{8} - 23444 x^{7} - 17831 x^{6} + 5559 x^{5} - 81600 x^{4} + 130898 x^{3} - 86453 x^{2} + 25835 x + 49069 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1936190195826058295484765625=5^{8}\cdot 13^{4}\cdot 19^{2}\cdot 29^{8}\cdot 31^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 19, 29, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{35} a^{10} - \frac{4}{35} a^{9} + \frac{1}{35} a^{8} - \frac{2}{7} a^{7} - \frac{9}{35} a^{6} - \frac{2}{5} a^{5} + \frac{16}{35} a^{4} - \frac{16}{35} a^{3} - \frac{13}{35} a^{2} - \frac{13}{35} a + \frac{16}{35}$, $\frac{1}{35} a^{11} - \frac{3}{7} a^{9} - \frac{6}{35} a^{8} - \frac{2}{5} a^{7} - \frac{3}{7} a^{6} - \frac{1}{7} a^{5} + \frac{13}{35} a^{4} - \frac{1}{5} a^{3} + \frac{1}{7} a^{2} - \frac{1}{35} a - \frac{6}{35}$, $\frac{1}{35} a^{12} + \frac{4}{35} a^{9} + \frac{1}{35} a^{8} + \frac{2}{7} a^{7} + \frac{13}{35} a^{5} - \frac{12}{35} a^{4} + \frac{2}{7} a^{3} + \frac{2}{5} a^{2} + \frac{9}{35} a - \frac{1}{7}$, $\frac{1}{35} a^{13} + \frac{17}{35} a^{9} + \frac{6}{35} a^{8} + \frac{1}{7} a^{7} + \frac{2}{5} a^{6} + \frac{9}{35} a^{5} + \frac{16}{35} a^{4} + \frac{8}{35} a^{3} - \frac{9}{35} a^{2} + \frac{12}{35} a + \frac{6}{35}$, $\frac{1}{92365} a^{14} + \frac{131}{13195} a^{13} + \frac{772}{92365} a^{12} + \frac{223}{92365} a^{11} + \frac{433}{92365} a^{10} - \frac{9041}{92365} a^{9} - \frac{1153}{92365} a^{8} - \frac{38153}{92365} a^{7} - \frac{31377}{92365} a^{6} - \frac{12854}{92365} a^{5} + \frac{10141}{92365} a^{4} - \frac{3597}{18473} a^{3} + \frac{27744}{92365} a^{2} + \frac{673}{1885} a - \frac{393}{18473}$, $\frac{1}{970535736516116243295742700912495} a^{15} + \frac{1130127410442693213266512637}{970535736516116243295742700912495} a^{14} - \frac{2320016211605545191728111641653}{194107147303223248659148540182499} a^{13} - \frac{3381879256152790274065121043497}{970535736516116243295742700912495} a^{12} + \frac{7070385459989025696127055090233}{970535736516116243295742700912495} a^{11} - \frac{19385841653553784938369626003}{194107147303223248659148540182499} a^{10} - \frac{385397215692656870483764476691921}{970535736516116243295742700912495} a^{9} + \frac{253716296584549966899585383433511}{970535736516116243295742700912495} a^{8} - \frac{243793424180612982988412531785787}{970535736516116243295742700912495} a^{7} + \frac{11252174746942094109609156845088}{74656595116624326407364823147115} a^{6} + \frac{415639069276547562430011150468859}{970535736516116243295742700912495} a^{5} - \frac{462782559126389077914162370874696}{970535736516116243295742700912495} a^{4} + \frac{40735679667256508239661484781682}{970535736516116243295742700912495} a^{3} + \frac{10546749831373310445957369913124}{74656595116624326407364823147115} a^{2} - \frac{423228234171176932501753533171827}{970535736516116243295742700912495} a + \frac{91880643228278840470543902246544}{970535736516116243295742700912495}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20924009.7493 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T608):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{145}) \), 4.4.4205.1 x2, 4.4.725.1 x2, \(\Q(\sqrt{5}, \sqrt{29})\), 8.8.442050625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $19$ | 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $31$ | 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 31.4.2.2 | $x^{4} - 31 x^{2} + 11532$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |