Normalized defining polynomial
\( x^{16} - 2 x^{15} - 9 x^{14} - 3 x^{13} - 5329 x^{12} + 5969 x^{11} + 23059 x^{10} - 57699 x^{9} + 6616977 x^{8} - 6636719 x^{7} - 30238421 x^{6} + 108400439 x^{5} - 598924089 x^{4} + 291344387 x^{3} + 696989411 x^{2} - 1291737162 x - 80946349 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(192348417750098090008878000244140625=5^{12}\cdot 13^{2}\cdot 29^{6}\cdot 97^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $160.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 29, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{9} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{5} + \frac{1}{5}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{6} + \frac{1}{5} a$, $\frac{1}{145} a^{12} - \frac{7}{145} a^{11} + \frac{13}{145} a^{10} - \frac{12}{145} a^{9} + \frac{7}{145} a^{8} - \frac{54}{145} a^{7} - \frac{34}{145} a^{6} - \frac{10}{29} a^{5} + \frac{53}{145} a^{4} + \frac{1}{29} a^{3} + \frac{2}{5} a^{2} + \frac{71}{145} a - \frac{47}{145}$, $\frac{1}{145} a^{13} - \frac{7}{145} a^{11} - \frac{8}{145} a^{10} + \frac{2}{29} a^{9} - \frac{1}{29} a^{8} - \frac{64}{145} a^{7} - \frac{27}{145} a^{6} + \frac{51}{145} a^{5} - \frac{59}{145} a^{4} + \frac{7}{29} a^{3} - \frac{9}{29} a^{2} + \frac{44}{145} a - \frac{39}{145}$, $\frac{1}{290} a^{14} - \frac{1}{290} a^{13} - \frac{1}{290} a^{12} + \frac{3}{58} a^{11} + \frac{9}{290} a^{10} - \frac{1}{10} a^{9} - \frac{17}{290} a^{8} - \frac{11}{58} a^{7} + \frac{27}{58} a^{6} + \frac{83}{290} a^{5} - \frac{23}{290} a^{4} - \frac{137}{290} a^{3} + \frac{89}{290} a^{2} + \frac{111}{290} a - \frac{127}{290}$, $\frac{1}{721083101750989061550374464730598814659339262278895804198958463610} a^{15} - \frac{1014300410950211089765971358591651660950548160800639620841342821}{721083101750989061550374464730598814659339262278895804198958463610} a^{14} + \frac{836152667346780018029938268023581270199710193050461696687754207}{721083101750989061550374464730598814659339262278895804198958463610} a^{13} - \frac{420992643394938352439467899510915746664628587001817162960491437}{144216620350197812310074892946119762931867852455779160839791692722} a^{12} + \frac{1531568125157328108586884610610745409792565445141325082988951873}{24864934543137553846564636714848234988253078009617096696515809090} a^{11} - \frac{62306063908189038019347603207450366345842088688562803798572173053}{721083101750989061550374464730598814659339262278895804198958463610} a^{10} - \frac{64812184165280809144639577249334539045233436513197570287207225271}{721083101750989061550374464730598814659339262278895804198958463610} a^{9} - \frac{6856881659917818203813634865937549382625849938396667150789037489}{721083101750989061550374464730598814659339262278895804198958463610} a^{8} - \frac{72696838117772375994893134867149385321225479083552138018421551519}{721083101750989061550374464730598814659339262278895804198958463610} a^{7} + \frac{14143744092780563967582981844748860687799374630812022846115888147}{721083101750989061550374464730598814659339262278895804198958463610} a^{6} + \frac{71799007369205155624698137935163470409336856282407689516732603121}{721083101750989061550374464730598814659339262278895804198958463610} a^{5} - \frac{3624968082449108584821256664688929336020658093039848355788194905}{13110601850017982937279535722374523902897077495979923712708335702} a^{4} + \frac{250448381475711483276325745141438487453459203235932245520478893151}{721083101750989061550374464730598814659339262278895804198958463610} a^{3} - \frac{15122930927529142141233764422605111232692582531149750771527228749}{144216620350197812310074892946119762931867852455779160839791692722} a^{2} + \frac{171894982936958763970052385149455105167240374852176208937923466533}{721083101750989061550374464730598814659339262278895804198958463610} a - \frac{2863107057282936997722824628477865506107059733307821837157315200}{6555300925008991468639767861187261951448538747989961856354167851}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 587311848098 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 55 conjugacy class representatives for t16n1220 are not computed |
| Character table for t16n1220 is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{485}) \), 4.4.725.1, \(\Q(\sqrt{5}, \sqrt{97})\), 4.4.6821525.1, 8.8.46533203325625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $97$ | 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |