Normalized defining polynomial
\( x^{16} - 20 x^{14} - 310 x^{12} + 4280 x^{10} + 35695 x^{8} + 35600 x^{6} - 20050 x^{4} - 7700 x^{2} + 3025 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(190219913946726400000000000000=2^{44}\cdot 5^{14}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{40} a^{8} - \frac{1}{4} a^{6} + \frac{3}{8} a^{4} - \frac{1}{4} a^{2} - \frac{1}{8}$, $\frac{1}{40} a^{9} - \frac{1}{4} a^{7} + \frac{3}{8} a^{5} - \frac{1}{4} a^{3} - \frac{1}{8} a$, $\frac{1}{40} a^{10} - \frac{1}{8} a^{6} - \frac{1}{2} a^{4} + \frac{3}{8} a^{2} - \frac{1}{4}$, $\frac{1}{40} a^{11} - \frac{1}{8} a^{7} - \frac{1}{2} a^{5} + \frac{3}{8} a^{3} - \frac{1}{4} a$, $\frac{1}{760} a^{12} - \frac{3}{760} a^{10} - \frac{3}{760} a^{8} - \frac{53}{152} a^{6} + \frac{61}{152} a^{4} - \frac{63}{152} a^{2} - \frac{5}{38}$, $\frac{1}{760} a^{13} - \frac{3}{760} a^{11} - \frac{3}{760} a^{9} - \frac{53}{152} a^{7} + \frac{61}{152} a^{5} - \frac{63}{152} a^{3} - \frac{5}{38} a$, $\frac{1}{6882704717680} a^{14} - \frac{1}{1520} a^{13} - \frac{225991657}{344135235884} a^{12} + \frac{3}{1520} a^{11} - \frac{21726349889}{6882704717680} a^{10} - \frac{1}{95} a^{9} + \frac{59400442421}{6882704717680} a^{8} + \frac{91}{304} a^{7} + \frac{60549080495}{125140085776} a^{6} + \frac{17}{152} a^{5} - \frac{293257262471}{1376540943536} a^{4} - \frac{51}{304} a^{3} - \frac{85025100867}{688270471768} a^{2} - \frac{113}{304} a - \frac{39120733999}{125140085776}$, $\frac{1}{6882704717680} a^{15} + \frac{8262069}{6882704717680} a^{13} - \frac{1}{1520} a^{12} - \frac{8827658879}{1720676179420} a^{11} + \frac{3}{1520} a^{10} - \frac{40217652177}{6882704717680} a^{9} - \frac{1}{95} a^{8} + \frac{27187202605}{62570042888} a^{7} + \frac{91}{304} a^{6} + \frac{413125590133}{1376540943536} a^{5} + \frac{17}{152} a^{4} + \frac{405017889809}{1376540943536} a^{3} - \frac{51}{304} a^{2} + \frac{11518831935}{62570042888} a - \frac{113}{304}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 819805611.743 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^2\times C_4).C_2^4$ (as 16T471):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $(C_2^2\times C_4).C_2^4$ |
| Character table for $(C_2^2\times C_4).C_2^4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.88000.1, \(\Q(\zeta_{20})^+\), 4.4.17600.1, 8.8.123904000000.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |