Normalized defining polynomial
\( x^{16} - x^{15} - 8 x^{14} - 17 x^{13} - 30 x^{12} - 120 x^{11} - 227 x^{10} - 72 x^{9} - 46 x^{8} - 167 x^{7} - 342 x^{6} - 300 x^{5} + 205 x^{4} + 148 x^{3} - 78 x^{2} + 4 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(189537365823025172265625=5^{8}\cdot 13^{8}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{12} a^{12} + \frac{1}{6} a^{11} - \frac{1}{2} a^{10} + \frac{1}{12} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} + \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{12} a^{3} + \frac{1}{6} a^{2} + \frac{1}{12}$, $\frac{1}{12} a^{13} + \frac{1}{6} a^{11} + \frac{1}{12} a^{10} - \frac{1}{6} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{5}{12} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{12} a - \frac{1}{6}$, $\frac{1}{204} a^{14} - \frac{5}{204} a^{13} - \frac{1}{34} a^{12} - \frac{73}{204} a^{11} - \frac{55}{204} a^{10} + \frac{5}{51} a^{9} + \frac{1}{68} a^{8} + \frac{83}{204} a^{7} - \frac{2}{17} a^{6} + \frac{67}{204} a^{5} - \frac{59}{204} a^{4} + \frac{14}{51} a^{3} - \frac{79}{204} a^{2} + \frac{1}{12} a + \frac{43}{102}$, $\frac{1}{147757105659588} a^{15} - \frac{31794195785}{36939276414897} a^{14} + \frac{1191580576304}{36939276414897} a^{13} - \frac{771231222703}{73878552829794} a^{12} + \frac{453048599578}{36939276414897} a^{11} - \frac{16509584064055}{73878552829794} a^{10} - \frac{1293698011999}{73878552829794} a^{9} - \frac{1202766886180}{36939276414897} a^{8} + \frac{4039303290395}{12313092138299} a^{7} + \frac{13600480374791}{36939276414897} a^{6} + \frac{29135650186031}{73878552829794} a^{5} + \frac{22011112334899}{73878552829794} a^{4} - \frac{396203628646}{36939276414897} a^{3} - \frac{5655960533912}{36939276414897} a^{2} - \frac{5066920303015}{73878552829794} a - \frac{29643232236767}{147757105659588}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 454688.665861 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_2^2$ (as 16T128):
| A solvable group of order 64 |
| The 16 conjugacy class representatives for $C_2\wr C_2^2$ |
| Character table for $C_2\wr C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\sqrt{65}) \), \(\Q(\sqrt{5}) \), 4.4.122525.1, 4.4.725.1, \(\Q(\sqrt{5}, \sqrt{13})\), 8.8.15012375625.1, 8.4.517668125.1, 8.4.435358893125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |