Normalized defining polynomial
\( x^{16} - 86874 x^{14} - 8522437947 x^{12} + 549770950990792 x^{10} + 12945257956415288274 x^{8} - 403100026764513865076870 x^{6} - 4195653086671836716753682900 x^{4} + 82597434109237025018114418481500 x^{2} + 43298734145286098398063387496619025 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(187381214367639282787301532684742893490174895091410698240000000000=2^{24}\cdot 5^{10}\cdot 11^{2}\cdot 71^{8}\cdot 101^{6}\cdot 1579^{2}\cdot 4159^{2}\cdot 17881^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $12{,}010.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 71, 101, 1579, 4159, 17881$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} + \frac{1}{6}$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} + \frac{1}{6} a$, $\frac{1}{1980} a^{12} - \frac{1}{12} a^{11} - \frac{29}{1980} a^{10} - \frac{1}{4} a^{9} + \frac{17}{220} a^{8} + \frac{103}{220} a^{6} - \frac{7}{660} a^{4} - \frac{1}{4} a^{3} + \frac{26}{99} a^{2} - \frac{1}{3} a - \frac{11}{36}$, $\frac{1}{631620} a^{13} + \frac{2344}{157905} a^{11} - \frac{4217}{17545} a^{9} - \frac{1}{4} a^{8} - \frac{15517}{70180} a^{7} + \frac{1}{4} a^{6} + \frac{44213}{210540} a^{5} + \frac{1195}{4356} a^{3} - \frac{839}{11484} a + \frac{1}{4}$, $\frac{1}{248351898730958082116597432324116233072506659528548347069311886747972201393818003890174475695040594175478366562052293260} a^{14} - \frac{29726083714568291799447476823531333597864976617394932367631304552330709970823642906400519553317334987116517682555193}{248351898730958082116597432324116233072506659528548347069311886747972201393818003890174475695040594175478366562052293260} a^{12} - \frac{1}{12} a^{11} - \frac{14142944658011403987669622038343553045028376257309050303093946980141388137447627995639234399568338625390002308667166051}{248351898730958082116597432324116233072506659528548347069311886747972201393818003890174475695040594175478366562052293260} a^{10} - \frac{3605426664734962265425256740553587155068149994736456513696501440745999011725607932639136020170962460908224318070665}{46770602397543894937212322471584977979756433056223794175011654754797024744598494141275795799442673102726622704717946} a^{8} - \frac{1}{4} a^{7} + \frac{8486439761838218426792100072300005930763649198482165404607561610324244212684644808421825831181417162904432340260029833}{20695991560913173509716452693676352756042221627379028922442657228997683449484833657514539641253382847956530546837691105} a^{6} - \frac{893321540058587802990020907123036467513311959561297576248616884409778119670667362403500762328190360674186141820989161}{2140964644232397259625839933828588216142298789039209888528550747827346563739810378363573066336556846340330746224588735} a^{4} - \frac{1}{4} a^{3} + \frac{18643919592547845450020388373425456311827303096415479125263720535484236287314454526959028334419245055160959179832361}{44707812552827737554743012119552877240775276242762978770353174932128209071794420142245630188126119563542460227192132} a^{2} + \frac{5}{12} a + \frac{41904254320883838159893265483500478031497505737009854360918975147600374709707557563442579185182194907}{108501864109930787800333049268617823308738279975497777510595253637810895010457013329360982034038858628}$, $\frac{1}{248351898730958082116597432324116233072506659528548347069311886747972201393818003890174475695040594175478366562052293260} a^{15} + \frac{31397139975678342830939344971334912265928752443142140915239799722226742078635560340889773141062674637858509882671}{49670379746191616423319486464823246614501331905709669413862377349594440278763600778034895139008118835095673312410458652} a^{13} - \frac{751794030007638747612381966612543593242124183501759212457734415870136656415388646034016459776491155649405670655011092}{62087974682739520529149358081029058268126664882137086767327971686993050348454500972543618923760148543869591640513073315} a^{11} - \frac{1}{12} a^{10} - \frac{43938225415701635722181062344818434809452069953849710265069714831359232105409402006518072431795216270599141821299601}{467706023975438949372123224715849779797564330562237941750116547547970247445984941412757957994426731027266227047179460} a^{9} + \frac{4397218877857380553379748610414568901586225454844762422657062877625159656206689923326267386762816398076486671979927157}{41391983121826347019432905387352705512084443254758057844885314457995366898969667315029079282506765695913061093675382210} a^{7} - \frac{1}{4} a^{6} - \frac{28398808569832961112930661281873736291058871808676996374824670766428570037491898594815698354993633195814273521498799166}{62087974682739520529149358081029058268126664882137086767327971686993050348454500972543618923760148543869591640513073315} a^{5} + \frac{183527366876378142060505946167442430507740773896030137476037442378650621973169236180836934484053766178807684280274}{11176953138206934388685753029888219310193819060690744692588293733032052267948605035561407547031529890885615056798033} a^{3} - \frac{1}{4} a^{2} + \frac{15699961501016874242745904237292568222410433121278141912681582765012174165472833597373026440005071943}{34612094651067921308306242716689085635487511312183791025879885910461675508335787252066153268858395902332} a + \frac{5}{12}$
Class group and class number
Not computed
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 38 conjugacy class representatives for t16n813 |
| Character table for t16n813 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{355}) \), \(\Q(\sqrt{71}) \), 4.4.203656400.1, 4.4.2525.1, \(\Q(\sqrt{5}, \sqrt{71})\), 8.8.41475929260960000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71 | Data not computed | ||||||
| 101 | Data not computed | ||||||
| 1579 | Data not computed | ||||||
| 4159 | Data not computed | ||||||
| 17881 | Data not computed | ||||||