Normalized defining polynomial
\( x^{16} + 102 x^{14} - 10 x^{13} + 2925 x^{12} - 4960 x^{11} - 61068 x^{10} - 99060 x^{9} - 3314811 x^{8} + 11869340 x^{7} - 13381432 x^{6} + 206994040 x^{5} + 267067685 x^{4} - 3941427530 x^{3} + 3833770698 x^{2} + 4442079620 x - 3269009959 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18682108719227553550336000000000000=2^{24}\cdot 5^{12}\cdot 61^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $138.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{9} a^{11} + \frac{2}{9} a^{9} + \frac{4}{9} a^{8} - \frac{2}{9} a^{7} - \frac{2}{9} a^{6} + \frac{1}{9} a^{5} - \frac{1}{9} a^{4} + \frac{1}{3} a^{3} - \frac{2}{9} a^{2} - \frac{1}{9} a - \frac{1}{9}$, $\frac{1}{9} a^{12} + \frac{2}{9} a^{10} + \frac{4}{9} a^{9} - \frac{2}{9} a^{8} - \frac{2}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{3} a^{4} - \frac{2}{9} a^{3} - \frac{1}{9} a^{2} - \frac{1}{9} a$, $\frac{1}{9} a^{13} + \frac{4}{9} a^{10} + \frac{1}{3} a^{9} - \frac{1}{9} a^{8} - \frac{4}{9} a^{7} + \frac{1}{3} a^{6} + \frac{1}{9} a^{5} + \frac{2}{9} a^{3} + \frac{1}{3} a^{2} + \frac{2}{9} a + \frac{2}{9}$, $\frac{1}{1053} a^{14} - \frac{2}{81} a^{13} - \frac{7}{351} a^{12} + \frac{16}{1053} a^{11} + \frac{100}{1053} a^{10} - \frac{103}{1053} a^{9} + \frac{355}{1053} a^{8} + \frac{215}{1053} a^{7} - \frac{95}{1053} a^{6} + \frac{25}{1053} a^{5} + \frac{233}{1053} a^{4} + \frac{38}{1053} a^{3} - \frac{97}{1053} a^{2} + \frac{148}{1053} a - \frac{64}{1053}$, $\frac{1}{940710189634981187698766777766090715006592542135138612707792858295317} a^{15} + \frac{180551770654140128686555418280399193249168277118166238110139501357}{940710189634981187698766777766090715006592542135138612707792858295317} a^{14} - \frac{4463549897700450632259162870574105371060020840346558186558960724781}{940710189634981187698766777766090715006592542135138612707792858295317} a^{13} - \frac{46688426583857291833242127581538836521902764156332397100229467066166}{940710189634981187698766777766090715006592542135138612707792858295317} a^{12} - \frac{45808441760242152422883916091976664762593135732059763327264657263941}{940710189634981187698766777766090715006592542135138612707792858295317} a^{11} + \frac{15521811383224175703369740458870205879252050400575405455126682356617}{34841118134628932877732102880225582037281205264264393063251587344271} a^{10} + \frac{92378296155676260905889771695525098525520981371634884523288886400922}{313570063211660395899588925922030238335530847378379537569264286098439} a^{9} + \frac{42051148282035024120361439497143269426704626893996227771236543598499}{313570063211660395899588925922030238335530847378379537569264286098439} a^{8} - \frac{16755674121141669887799136061667370998484950084701847349911378548543}{104523354403886798633196308640676746111843615792793179189754762032813} a^{7} + \frac{175912392585666777476175251190169067228284969455910866901303181248238}{940710189634981187698766777766090715006592542135138612707792858295317} a^{6} - \frac{8384030926311336413986678372197582073502436882208315190886417022754}{104523354403886798633196308640676746111843615792793179189754762032813} a^{5} - \frac{377791548527573209574035709296533732186698067186326458260883809804338}{940710189634981187698766777766090715006592542135138612707792858295317} a^{4} - \frac{90054927554528185673588417650497930180456992887023823546916078782130}{940710189634981187698766777766090715006592542135138612707792858295317} a^{3} + \frac{28620143467029671174411870645317763344400836154348006559306889720336}{313570063211660395899588925922030238335530847378379537569264286098439} a^{2} + \frac{11013948681255332472695235487281686541685822305388863990226087406267}{24120774093204645838429917378617710641194680567567656736097252776803} a + \frac{241972455421844338937532897326933520593824108500647743986526600599170}{940710189634981187698766777766090715006592542135138612707792858295317}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 77987161152.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 41 conjugacy class representatives for t16n864 |
| Character table for t16n864 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.8.14884000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.3 | $x^{4} + 122$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $97$ | 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |