Normalized defining polynomial
\( x^{16} - 8 x^{15} + 50 x^{13} - 385 x^{12} + 2226 x^{11} - 4508 x^{10} + 2130 x^{9} + 18520 x^{8} - 98840 x^{7} + 240112 x^{6} - 238766 x^{5} - 179065 x^{4} + 573390 x^{3} - 337540 x^{2} - 268022 x + 70561 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1867887076585120400000000000000=2^{16}\cdot 5^{14}\cdot 1361^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 1361$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{10} a^{8} + \frac{1}{10} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{3} - \frac{3}{10} a^{2} - \frac{1}{10} a - \frac{2}{5}$, $\frac{1}{10} a^{9} + \frac{1}{10} a^{7} + \frac{1}{10} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{2} a^{3} + \frac{1}{5} a^{2} - \frac{3}{10} a - \frac{1}{10}$, $\frac{1}{20} a^{10} - \frac{1}{20} a^{9} - \frac{1}{20} a^{7} - \frac{1}{20} a^{6} + \frac{1}{10} a^{5} - \frac{7}{20} a^{4} + \frac{1}{4} a^{3} - \frac{1}{10} a^{2} + \frac{3}{20} a + \frac{1}{4}$, $\frac{1}{20} a^{11} - \frac{1}{20} a^{9} - \frac{1}{20} a^{8} - \frac{1}{10} a^{7} + \frac{1}{20} a^{6} - \frac{1}{4} a^{5} - \frac{1}{10} a^{4} + \frac{3}{20} a^{3} + \frac{1}{20} a^{2} + \frac{2}{5} a + \frac{1}{4}$, $\frac{1}{200} a^{12} + \frac{1}{50} a^{11} + \frac{1}{50} a^{10} + \frac{17}{100} a^{7} + \frac{23}{100} a^{6} + \frac{9}{50} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{21}{50} a^{2} + \frac{43}{100} a + \frac{61}{200}$, $\frac{1}{400} a^{13} - \frac{1}{400} a^{12} + \frac{1}{100} a^{11} - \frac{1}{40} a^{10} + \frac{1}{40} a^{9} + \frac{7}{200} a^{8} + \frac{33}{200} a^{7} - \frac{11}{100} a^{6} + \frac{1}{4} a^{5} - \frac{19}{40} a^{4} - \frac{3}{200} a^{3} - \frac{27}{200} a^{2} - \frac{99}{400} a + \frac{21}{80}$, $\frac{1}{400} a^{14} - \frac{1}{400} a^{12} - \frac{1}{200} a^{11} + \frac{1}{100} a^{10} - \frac{1}{25} a^{9} - \frac{1}{20} a^{8} - \frac{27}{200} a^{7} - \frac{11}{50} a^{6} - \frac{67}{200} a^{5} + \frac{13}{50} a^{4} + \frac{9}{20} a^{3} + \frac{131}{400} a^{2} + \frac{81}{200} a + \frac{181}{400}$, $\frac{1}{702353714757890209465758557735200} a^{15} - \frac{95077054192736223344448204659}{140470742951578041893151711547040} a^{14} + \frac{486474551915256498041389032621}{702353714757890209465758557735200} a^{13} - \frac{1226273050982555879306218932081}{702353714757890209465758557735200} a^{12} + \frac{8631859379351919200595761619947}{351176857378945104732879278867600} a^{11} - \frac{173505547803392340596471236449}{43897107172368138091609909858450} a^{10} - \frac{1549003905368238930776284544311}{35117685737894510473287927886760} a^{9} - \frac{3885193650613409678901533697453}{351176857378945104732879278867600} a^{8} - \frac{49065515861246145379271471426537}{351176857378945104732879278867600} a^{7} + \frac{44337237788742517545866107940043}{351176857378945104732879278867600} a^{6} - \frac{41717163409129574895971947854369}{351176857378945104732879278867600} a^{5} + \frac{4631399976967098204570746491677}{17558842868947255236643963943380} a^{4} + \frac{2271088373471259512500608469199}{702353714757890209465758557735200} a^{3} + \frac{213063699136776877633698079493061}{702353714757890209465758557735200} a^{2} - \frac{336146899201655294792909533859499}{702353714757890209465758557735200} a + \frac{45624451679946891041357659809183}{702353714757890209465758557735200}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4037848194.05 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1281 |
| Character table for t16n1281 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.8.7409284000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 1361 | Data not computed | ||||||