Normalized defining polynomial
\( x^{16} - 8 x^{15} - 266 x^{14} + 1516 x^{13} + 28364 x^{12} - 102876 x^{11} - 1539484 x^{10} + 3401900 x^{9} + 46886345 x^{8} - 60179612 x^{7} - 833622374 x^{6} + 601499728 x^{5} + 8825662592 x^{4} - 3786981696 x^{3} - 56144174560 x^{2} + 11943711488 x + 168456667648 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(183460757637086369287254273534720689045504=2^{34}\cdot 17^{8}\cdot 11525081^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $379.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 11525081$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{64} a^{13} - \frac{3}{32} a^{11} + \frac{3}{16} a^{10} + \frac{5}{16} a^{9} + \frac{5}{16} a^{8} + \frac{5}{16} a^{7} + \frac{7}{16} a^{6} - \frac{7}{64} a^{5} + \frac{7}{16} a^{4} + \frac{15}{32} a^{3} - \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{640} a^{14} - \frac{1}{320} a^{13} + \frac{13}{320} a^{12} + \frac{3}{80} a^{11} - \frac{17}{160} a^{10} - \frac{37}{160} a^{9} + \frac{59}{160} a^{8} - \frac{19}{160} a^{7} - \frac{127}{640} a^{6} - \frac{139}{320} a^{5} - \frac{25}{64} a^{4} + \frac{49}{160} a^{3} + \frac{31}{80} a^{2} - \frac{9}{40} a - \frac{3}{10}$, $\frac{1}{14079343498870353106538384766599896602244920487721287856677931520} a^{15} + \frac{533096155331942138272317812425067298357353288294885743555}{7332991405661642242988742065937446147002562754021504092019756} a^{14} - \frac{50511038419244333905217524051095067391000913578751154412376949}{7039671749435176553269192383299948301122460243860643928338965760} a^{13} + \frac{12327478262749007325624707825381519174598466455387672307241513}{1173278624905862758878198730549991383520410040643440654723160960} a^{12} + \frac{36187969830481811524411593991821071142895696205520040888560799}{703967174943517655326919238329994830112246024386064392833896576} a^{11} + \frac{13200479697384483486387772222861822989410413311668818872223213}{270756605747506790510353553203844165427786932456178612628421760} a^{10} - \frac{31233424850199450996701820423640065237842892054113118637954213}{100566739277645379332417034047142118587463717769437770404842368} a^{9} + \frac{1673949002090453181453620619776863589975825969331012432951161059}{3519835874717588276634596191649974150561230121930321964169482880} a^{8} - \frac{6339155906691995321240827800867098617940225573430003111757368599}{14079343498870353106538384766599896602244920487721287856677931520} a^{7} - \frac{180694915874376748026628120150776436372226533603491636212875031}{1173278624905862758878198730549991383520410040643440654723160960} a^{6} - \frac{271004094872711632231939892746028001045714807159301429184607763}{7039671749435176553269192383299948301122460243860643928338965760} a^{5} + \frac{19379831479703786025587010212509002429142147587297355833837439}{97773218742155229906516560879165948626700836720286721226930080} a^{4} + \frac{292899918833583312021695864140061461993928571803172958676423}{1692228785921917440689709707524026033923668327851116328927636} a^{3} - \frac{181362325363687463443769520165240918454565507383128401276147}{5714019277138942007523695116314893101560438509627146045729680} a^{2} + \frac{39635475623267199271268370983388735687077510845133410984300333}{87995896867939706915864904791249353764030753048258049104237072} a - \frac{35149937147338263178322851483295681620213538510215287361875613}{109994871084924633644831130989061692205038441310322561380296340}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4988064436360000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 74 conjugacy class representatives for t16n1472 are not computed |
| Character table for t16n1472 is not computed |
Intermediate fields
| \(\Q(\sqrt{34}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{2}, \sqrt{17})\), 8.8.15771013778653184.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.8.22.84 | $x^{8} + 4 x^{7} + 10 x^{4} + 4 x^{2} + 14$ | $8$ | $1$ | $22$ | $D_4$ | $[2, 3, 7/2]$ | |
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11525081 | Data not computed | ||||||