Normalized defining polynomial
\( x^{16} - 8 x^{15} - 40 x^{14} + 96 x^{13} + 532 x^{12} + 2008 x^{11} - 33864 x^{10} - 108104 x^{9} + 308810 x^{8} + 324776 x^{7} - 1325160 x^{6} - 603568 x^{5} + 6613892 x^{4} + 435432 x^{3} - 16868624 x^{2} + 10924760 x - 1804313 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1807769551224448500316223474054987776=2^{56}\cdot 7^{8}\cdot 17^{2}\cdot 41^{4}\cdot 73^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $184.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17, 41, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} + \frac{1}{7} a^{9} + \frac{2}{7} a^{7} + \frac{3}{7} a^{6} - \frac{1}{7} a^{5} - \frac{1}{7} a^{3} - \frac{3}{7} a^{2}$, $\frac{1}{7} a^{11} - \frac{1}{7} a^{9} + \frac{2}{7} a^{8} + \frac{1}{7} a^{7} + \frac{3}{7} a^{6} + \frac{1}{7} a^{5} - \frac{1}{7} a^{4} - \frac{2}{7} a^{3} + \frac{3}{7} a^{2}$, $\frac{1}{49} a^{12} - \frac{2}{49} a^{11} + \frac{1}{49} a^{10} + \frac{6}{49} a^{9} - \frac{17}{49} a^{8} - \frac{9}{49} a^{7} + \frac{1}{49} a^{6} + \frac{2}{49} a^{5} + \frac{1}{7} a^{4} - \frac{9}{49} a^{3} + \frac{9}{49} a^{2} - \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{343} a^{13} + \frac{4}{343} a^{11} - \frac{20}{343} a^{10} - \frac{138}{343} a^{9} + \frac{118}{343} a^{8} - \frac{17}{343} a^{7} + \frac{39}{343} a^{6} + \frac{46}{343} a^{5} + \frac{96}{343} a^{4} - \frac{44}{343} a^{3} - \frac{80}{343} a^{2} - \frac{22}{49} a - \frac{19}{49}$, $\frac{1}{40817} a^{14} + \frac{16}{40817} a^{13} + \frac{200}{40817} a^{12} + \frac{2592}{40817} a^{11} - \frac{1046}{40817} a^{10} + \frac{164}{40817} a^{9} + \frac{4076}{40817} a^{8} + \frac{1090}{40817} a^{7} + \frac{956}{2401} a^{6} + \frac{15581}{40817} a^{5} - \frac{20313}{40817} a^{4} - \frac{345}{833} a^{3} - \frac{9764}{40817} a^{2} + \frac{234}{833} a + \frac{1166}{5831}$, $\frac{1}{100946688689962907055605409271519171643293690289} a^{15} + \frac{1397010025611386446543846987149895185622}{100946688689962907055605409271519171643293690289} a^{14} + \frac{41655273163501720574209468325183690994182709}{100946688689962907055605409271519171643293690289} a^{13} + \frac{49965523750900488288826124367193819024191521}{5938040511174288650329729957148186567252570017} a^{12} + \frac{3550144448979467037887282670397861229669645510}{100946688689962907055605409271519171643293690289} a^{11} + \frac{2544014735960334930707344740220929861535678504}{100946688689962907055605409271519171643293690289} a^{10} - \frac{46932346353134568091454815373216267036361145858}{100946688689962907055605409271519171643293690289} a^{9} - \frac{10659001970051526045514162184840480316557118423}{100946688689962907055605409271519171643293690289} a^{8} - \frac{26098021664802589952177347533075341640612093032}{100946688689962907055605409271519171643293690289} a^{7} - \frac{33621146358785916832979055223463087835759364100}{100946688689962907055605409271519171643293690289} a^{6} - \frac{3555302664486089320876320758189116810696577710}{100946688689962907055605409271519171643293690289} a^{5} - \frac{14762639002158268555610917150628015706135189567}{100946688689962907055605409271519171643293690289} a^{4} - \frac{2250527772463561513897917307323673817086531770}{100946688689962907055605409271519171643293690289} a^{3} - \frac{18134500475433647367068616660393579749828989168}{100946688689962907055605409271519171643293690289} a^{2} + \frac{4719948482309903282826196307180442790719639165}{14420955527137558150800772753074167377613384327} a + \frac{5530374447084769868401573584372616611761765525}{14420955527137558150800772753074167377613384327}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2795208933900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 97 conjugacy class representatives for t16n1086 are not computed |
| Character table for t16n1086 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.587776.2, 4.4.100352.1, 4.4.293888.2, 8.8.270856810921984.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $73$ | 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 73.2.1.2 | $x^{2} + 365$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 73.2.1.2 | $x^{2} + 365$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |