Normalized defining polynomial
\( x^{16} - 4 x^{15} - 13 x^{14} + 1990 x^{13} - 113388 x^{12} + 322364 x^{11} - 13147586 x^{10} - 14823368 x^{9} + 54599923 x^{8} + 2235476042 x^{7} + 45257850300 x^{6} + 24021442783 x^{5} - 126249012240 x^{4} - 3783570586772 x^{3} - 15536602319783 x^{2} + 55367792792525 x - 36300633217867 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(180689179599093672760171229322647431883530841=41^{15}\cdot 47^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $583.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{37} a^{12} + \frac{9}{37} a^{11} + \frac{11}{37} a^{10} - \frac{8}{37} a^{9} - \frac{12}{37} a^{8} - \frac{17}{37} a^{7} + \frac{18}{37} a^{6} + \frac{18}{37} a^{5} + \frac{16}{37} a^{4} - \frac{11}{37} a^{3} + \frac{13}{37} a^{2} + \frac{8}{37} a - \frac{11}{37}$, $\frac{1}{37} a^{13} + \frac{4}{37} a^{11} + \frac{4}{37} a^{10} - \frac{14}{37} a^{9} + \frac{17}{37} a^{8} - \frac{14}{37} a^{7} + \frac{4}{37} a^{6} + \frac{2}{37} a^{5} - \frac{7}{37} a^{4} + \frac{1}{37} a^{3} + \frac{2}{37} a^{2} - \frac{9}{37} a - \frac{12}{37}$, $\frac{1}{596551} a^{14} + \frac{5874}{596551} a^{13} - \frac{6522}{596551} a^{12} - \frac{67128}{596551} a^{11} + \frac{157971}{596551} a^{10} + \frac{9615}{25937} a^{9} - \frac{23938}{596551} a^{8} - \frac{88284}{596551} a^{7} + \frac{182013}{596551} a^{6} - \frac{155381}{596551} a^{5} - \frac{68}{851} a^{4} + \frac{68227}{596551} a^{3} - \frac{43943}{596551} a^{2} + \frac{98895}{596551} a - \frac{46136}{596551}$, $\frac{1}{647217460620117192810904705216971731051492263217493726566678457210766072466175757040303625049249} a^{15} - \frac{200822138449794124520918933508009462269378461063067048656269727982780710989568097265995111}{647217460620117192810904705216971731051492263217493726566678457210766072466175757040303625049249} a^{14} - \frac{2397473227612299274495769912869495394608693439282307426454402493132912026057602606234757620949}{647217460620117192810904705216971731051492263217493726566678457210766072466175757040303625049249} a^{13} - \frac{1760209321102004256160034826658393313578565435903497759449392595767725339186673062172849377818}{647217460620117192810904705216971731051492263217493726566678457210766072466175757040303625049249} a^{12} + \frac{53939001598643974310579741186610148932827401589871239469704410576553062414659921540221634844904}{647217460620117192810904705216971731051492263217493726566678457210766072466175757040303625049249} a^{11} - \frac{116589544771396319374287930643678628828561240337262572611748078552901136661584347577546373462714}{647217460620117192810904705216971731051492263217493726566678457210766072466175757040303625049249} a^{10} + \frac{278463871058290648066407301409778471271550647069848399857668306255213380652031821288153905905304}{647217460620117192810904705216971731051492263217493726566678457210766072466175757040303625049249} a^{9} - \frac{190854771187425903245780999834555500369781148490286071142860472964042495171489783417399311074730}{647217460620117192810904705216971731051492263217493726566678457210766072466175757040303625049249} a^{8} - \frac{320253147734338602045923944175974830436023566821759656233107280872933481499434268248821664116999}{647217460620117192810904705216971731051492263217493726566678457210766072466175757040303625049249} a^{7} - \frac{4428259355543478502183189355367842790391108649949557176484701371507342129683479911826887334827}{20877982600648941703577571136031346162951363329596571824731563135831163627941153452913020162879} a^{6} + \frac{6572722315643500116551293593120942399615621028457758003667637570730977926411135233329749803793}{28139889592179008383082813270303118741369228835543205502899063356989829237659815523491461958663} a^{5} + \frac{42339335473937230744865903807346345084696424145246476947210377723557227974739106895531487531392}{647217460620117192810904705216971731051492263217493726566678457210766072466175757040303625049249} a^{4} + \frac{282182264927266242747044997504371310083796476033125564782174639597768876689111914541600864655796}{647217460620117192810904705216971731051492263217493726566678457210766072466175757040303625049249} a^{3} - \frac{216447603649727662064390380292647488926161126815128954053066839710307479935384499030539531940238}{647217460620117192810904705216971731051492263217493726566678457210766072466175757040303625049249} a^{2} + \frac{4820750447505206474710395840847592546862102390485103669421009784349407908503290839948956506219}{28139889592179008383082813270303118741369228835543205502899063356989829237659815523491461958663} a - \frac{746266910399475591266427159373303998421357639498648334368114415246478075049322461465364013735}{5096200477323757423707911064700564811429072938720423043832113836305244665087998086931524606687}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32440984770100000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.950338729925911961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | R | $16$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| 47 | Data not computed | ||||||