Normalized defining polynomial
\( x^{16} - 8 x^{15} + 109 x^{14} - 396 x^{13} - 7806 x^{12} + 103132 x^{11} - 1473708 x^{10} + 10191282 x^{9} - 58674377 x^{8} + 277896694 x^{7} - 386542951 x^{6} + 544899228 x^{5} + 8527873477 x^{4} - 40290083306 x^{3} - 98131356986 x^{2} - 5263574216 x + 33687444374 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17674106936653806821593702105612288=2^{18}\cdot 43^{5}\cdot 2777^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $138.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{148581130449192271932381536218132490886077564615511387964319573233024997918787627761} a^{15} - \frac{8373664141128970340697679379193519418614293716095873066150624446252834665087147244}{148581130449192271932381536218132490886077564615511387964319573233024997918787627761} a^{14} - \frac{43160218725010579284173786212773297722076383478610261133175272797831357002420035130}{148581130449192271932381536218132490886077564615511387964319573233024997918787627761} a^{13} - \frac{7989526122242897412640861614246865515546178701330575292673591633167846526806017020}{148581130449192271932381536218132490886077564615511387964319573233024997918787627761} a^{12} + \frac{25958368745620961663363894357673943523860801594876648748121301159213124322186505301}{148581130449192271932381536218132490886077564615511387964319573233024997918787627761} a^{11} + \frac{19535104386499218112562923319382456218722915054544445216823053077551618472843813919}{148581130449192271932381536218132490886077564615511387964319573233024997918787627761} a^{10} - \frac{40365985021985205111973794580821118853329108824382869435984090180018612792951109521}{148581130449192271932381536218132490886077564615511387964319573233024997918787627761} a^{9} - \frac{41402065311920807800014692127369665813550907016194572975623722363103993276803134869}{148581130449192271932381536218132490886077564615511387964319573233024997918787627761} a^{8} - \frac{1305075697132349773187499109878521178682935358943824221271028513592770791740050290}{148581130449192271932381536218132490886077564615511387964319573233024997918787627761} a^{7} - \frac{66259021990561766980064865349236306635902358070684345149453507146495792221481871153}{148581130449192271932381536218132490886077564615511387964319573233024997918787627761} a^{6} + \frac{9396427029323640818054774057564483528736782074189719509104358934679376812295567049}{148581130449192271932381536218132490886077564615511387964319573233024997918787627761} a^{5} + \frac{34788744818483840056221281983878798546103196779959637372380063286989390938376044969}{148581130449192271932381536218132490886077564615511387964319573233024997918787627761} a^{4} - \frac{59135742273571943260581399292654424016467517982003334129817353546866495966634783284}{148581130449192271932381536218132490886077564615511387964319573233024997918787627761} a^{3} - \frac{60725347031280378439173025944717783847616442529955911125583716215615759333612014611}{148581130449192271932381536218132490886077564615511387964319573233024997918787627761} a^{2} + \frac{50993344475669752917243764322295926481961812983993866899987667093650389740608762559}{148581130449192271932381536218132490886077564615511387964319573233024997918787627761} a + \frac{47591723434816236224578494339651169712954559001363757089209043561145021914960667557}{148581130449192271932381536218132490886077564615511387964319573233024997918787627761}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54923882171.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 36 conjugacy class representatives for t16n1540 |
| Character table for t16n1540 is not computed |
Intermediate fields
| 4.4.2777.1, 8.8.1326417388.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.12.12.5 | $x^{12} + 52 x^{10} - 11 x^{8} - 8 x^{6} - 45 x^{4} - 44 x^{2} - 9$ | $2$ | $6$ | $12$ | 12T51 | $[2, 2, 2, 2]^{6}$ | |
| 43 | Data not computed | ||||||
| 2777 | Data not computed | ||||||