Normalized defining polynomial
\( x^{16} - 8 x^{15} + 44 x^{14} - 48 x^{13} - 15144 x^{12} + 116112 x^{11} - 623602 x^{10} + 3417148 x^{9} + 28558154 x^{8} - 135009802 x^{7} - 275572557 x^{6} - 275460052 x^{5} - 6335264560 x^{4} - 9237377352 x^{3} - 24258026543 x^{2} - 55655339026 x + 107356128521 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17674106936653806821593702105612288=2^{18}\cdot 43^{5}\cdot 2777^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $138.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{4559608381426163216389981512544744717491510213275041904838895951667260701435914239} a^{15} + \frac{481802021719045066800835002655662604823050788199173917431579231738287903650383444}{4559608381426163216389981512544744717491510213275041904838895951667260701435914239} a^{14} - \frac{360934784012664473756755440041957926274327417917813723603137188348103149652851384}{4559608381426163216389981512544744717491510213275041904838895951667260701435914239} a^{13} + \frac{13162821515581481648009653776482610242085760541231840036365469404954943207277462}{123232658957463870713242743582290397770040816575001132563213404099115154092862547} a^{12} - \frac{1900256285352272945040559823171059887357694588545609746234197468350366998479906651}{4559608381426163216389981512544744717491510213275041904838895951667260701435914239} a^{11} + \frac{1452342411139048867039346595786128204593158474889925542779910863234179158398144913}{4559608381426163216389981512544744717491510213275041904838895951667260701435914239} a^{10} + \frac{1860800397208210717263409159615094175092829227302290715884425029593821951625758307}{4559608381426163216389981512544744717491510213275041904838895951667260701435914239} a^{9} - \frac{1803126169670060127958512943616154503055746362533449888759935494195494631292952182}{4559608381426163216389981512544744717491510213275041904838895951667260701435914239} a^{8} + \frac{1961894224486045892630534638526793480487778566207171262212967740878852284416803978}{4559608381426163216389981512544744717491510213275041904838895951667260701435914239} a^{7} + \frac{100040303019304614596226620599648834049893454580709038930675862847256916939053971}{4559608381426163216389981512544744717491510213275041904838895951667260701435914239} a^{6} + \frac{136963473468859495644000185859906459746831320500905266939547080995072371282864536}{4559608381426163216389981512544744717491510213275041904838895951667260701435914239} a^{5} + \frac{1233128636724716496588042056351785426303912312247482408061645081764869201346321778}{4559608381426163216389981512544744717491510213275041904838895951667260701435914239} a^{4} + \frac{2010979478172499623855577240638147722162875623227173496403739323078556415558716842}{4559608381426163216389981512544744717491510213275041904838895951667260701435914239} a^{3} + \frac{268770021992841168837623073426370583273111312378203747982579536185835441958938284}{4559608381426163216389981512544744717491510213275041904838895951667260701435914239} a^{2} + \frac{1357904575134617665402414947223605236028597109047343919661442174881682327944312828}{4559608381426163216389981512544744717491510213275041904838895951667260701435914239} a + \frac{2151715684162085115398408753417212301190594141186203143587395307047972994610869752}{4559608381426163216389981512544744717491510213275041904838895951667260701435914239}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 51780464535.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 36 conjugacy class representatives for t16n1540 |
| Character table for t16n1540 is not computed |
Intermediate fields
| 4.4.2777.1, 8.8.1326417388.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.12.12.5 | $x^{12} + 52 x^{10} - 11 x^{8} - 8 x^{6} - 45 x^{4} - 44 x^{2} - 9$ | $2$ | $6$ | $12$ | 12T51 | $[2, 2, 2, 2]^{6}$ | |
| 43 | Data not computed | ||||||
| 2777 | Data not computed | ||||||