Normalized defining polynomial
\( x^{16} - 8 x^{15} + 24 x^{14} - 16 x^{13} - 232 x^{12} + 840 x^{11} - 1312 x^{10} + 440 x^{9} + 4942 x^{8} - 16512 x^{7} + 32984 x^{6} - 11680 x^{5} - 69980 x^{4} + 73184 x^{3} - 74208 x^{2} + 154224 x - 83234 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1755550085243509039467331584=2^{56}\cdot 3^{8}\cdot 41^{2}\cdot 47^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 41, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{647961881} a^{14} - \frac{297829948}{647961881} a^{13} + \frac{84783914}{647961881} a^{12} + \frac{32853483}{92565983} a^{11} + \frac{3361783}{92565983} a^{10} + \frac{42369215}{92565983} a^{9} + \frac{213698741}{647961881} a^{8} - \frac{173801042}{647961881} a^{7} - \frac{256948935}{647961881} a^{6} - \frac{251105353}{647961881} a^{5} + \frac{130929998}{647961881} a^{4} + \frac{137344436}{647961881} a^{3} + \frac{192257532}{647961881} a^{2} + \frac{144724640}{647961881} a + \frac{90371637}{647961881}$, $\frac{1}{4379030030247498041098878604423} a^{15} - \frac{1238521785342628027819}{4379030030247498041098878604423} a^{14} + \frac{1025814300623894694163254640715}{4379030030247498041098878604423} a^{13} + \frac{91822426912631119107086725694}{4379030030247498041098878604423} a^{12} + \frac{70737324555067159953777507934}{625575718606785434442696943489} a^{11} + \frac{2139179461791271849313947389}{7918679982364372587882239791} a^{10} + \frac{923658231990443402686706148008}{4379030030247498041098878604423} a^{9} - \frac{1454182660951060909164679629917}{4379030030247498041098878604423} a^{8} + \frac{172268099697159754215939928011}{4379030030247498041098878604423} a^{7} + \frac{244160822926569934850310653741}{4379030030247498041098878604423} a^{6} - \frac{2135400119322454375834981526613}{4379030030247498041098878604423} a^{5} + \frac{678499770248364718624535934735}{4379030030247498041098878604423} a^{4} - \frac{2876374877737267956018372760}{7918679982364372587882239791} a^{3} - \frac{785817125531130043229213646277}{4379030030247498041098878604423} a^{2} + \frac{1697683437924085480487742384956}{4379030030247498041098878604423} a + \frac{298496986099480885174751782840}{4379030030247498041098878604423}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30869807.4108 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n797 are not computed |
| Character table for t16n797 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), \(\Q(\zeta_{16})^+\), 4.4.18432.1, \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\zeta_{48})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.4.2.2 | $x^{4} - 41 x^{2} + 20172$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 47 | Data not computed | ||||||