Properties

Label 16.8.17521464151...2529.2
Degree $16$
Signature $[8, 4]$
Discriminant $17^{14}\cdot 101^{4}$
Root discriminant $37.82$
Ramified primes $17, 101$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1194

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3229, -5990, 31002, -27935, 10442, 5689, -8562, 3263, -1932, 424, 295, -125, 140, -55, 11, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + 11*x^14 - 55*x^13 + 140*x^12 - 125*x^11 + 295*x^10 + 424*x^9 - 1932*x^8 + 3263*x^7 - 8562*x^6 + 5689*x^5 + 10442*x^4 - 27935*x^3 + 31002*x^2 - 5990*x - 3229)
 
gp: K = bnfinit(x^16 - 6*x^15 + 11*x^14 - 55*x^13 + 140*x^12 - 125*x^11 + 295*x^10 + 424*x^9 - 1932*x^8 + 3263*x^7 - 8562*x^6 + 5689*x^5 + 10442*x^4 - 27935*x^3 + 31002*x^2 - 5990*x - 3229, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{15} + 11 x^{14} - 55 x^{13} + 140 x^{12} - 125 x^{11} + 295 x^{10} + 424 x^{9} - 1932 x^{8} + 3263 x^{7} - 8562 x^{6} + 5689 x^{5} + 10442 x^{4} - 27935 x^{3} + 31002 x^{2} - 5990 x - 3229 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(17521464151279710991512529=17^{14}\cdot 101^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $37.82$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $17, 101$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{137} a^{14} - \frac{36}{137} a^{13} - \frac{12}{137} a^{12} + \frac{9}{137} a^{11} - \frac{46}{137} a^{10} - \frac{41}{137} a^{9} + \frac{66}{137} a^{8} - \frac{36}{137} a^{7} + \frac{56}{137} a^{6} + \frac{54}{137} a^{5} - \frac{25}{137} a^{4} + \frac{33}{137} a^{3} + \frac{37}{137} a^{2} + \frac{42}{137} a + \frac{28}{137}$, $\frac{1}{174122210410167826547529580219327} a^{15} + \frac{561899033355403423732004740913}{174122210410167826547529580219327} a^{14} - \frac{3237414789491484843377702979936}{174122210410167826547529580219327} a^{13} + \frac{23971714258999904578349447789638}{174122210410167826547529580219327} a^{12} - \frac{87037864745922413225034896190741}{174122210410167826547529580219327} a^{11} + \frac{20900668486621333583262886309161}{174122210410167826547529580219327} a^{10} - \frac{19004288106709606651105437202211}{174122210410167826547529580219327} a^{9} - \frac{3442954713730870443255435849447}{174122210410167826547529580219327} a^{8} + \frac{7608240858750740984860021110119}{174122210410167826547529580219327} a^{7} - \frac{58721079363493327170894252409517}{174122210410167826547529580219327} a^{6} + \frac{41423589646950911325502152155357}{174122210410167826547529580219327} a^{5} + \frac{17164682048566409442688033935730}{174122210410167826547529580219327} a^{4} - \frac{65391244661465344974568908302537}{174122210410167826547529580219327} a^{3} + \frac{49775222344414281525953042419663}{174122210410167826547529580219327} a^{2} - \frac{57699655023917640787140173157477}{174122210410167826547529580219327} a + \frac{72517042088101841390134098009581}{174122210410167826547529580219327}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3421001.30832 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1194:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 40 conjugacy class representatives for t16n1194
Character table for t16n1194 is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$17$17.8.7.3$x^{8} - 17$$8$$1$$7$$C_8$$[\ ]_{8}$
17.8.7.3$x^{8} - 17$$8$$1$$7$$C_8$$[\ ]_{8}$
$101$$\Q_{101}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{101}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{101}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{101}$$x + 2$$1$$1$$0$Trivial$[\ ]$
101.2.1.2$x^{2} + 202$$2$$1$$1$$C_2$$[\ ]_{2}$
101.2.1.2$x^{2} + 202$$2$$1$$1$$C_2$$[\ ]_{2}$
101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.1.2$x^{2} + 202$$2$$1$$1$$C_2$$[\ ]_{2}$
101.2.1.2$x^{2} + 202$$2$$1$$1$$C_2$$[\ ]_{2}$
101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$