Properties

Label 16.8.17521464151...2529.1
Degree $16$
Signature $[8, 4]$
Discriminant $17^{14}\cdot 101^{4}$
Root discriminant $37.82$
Ramified primes $17, 101$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1194

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![25261, -37700, -9246, 28908, 479, -2558, -5156, -3249, 2901, 1136, -568, -231, 97, 48, -16, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 - 16*x^14 + 48*x^13 + 97*x^12 - 231*x^11 - 568*x^10 + 1136*x^9 + 2901*x^8 - 3249*x^7 - 5156*x^6 - 2558*x^5 + 479*x^4 + 28908*x^3 - 9246*x^2 - 37700*x + 25261)
 
gp: K = bnfinit(x^16 - 4*x^15 - 16*x^14 + 48*x^13 + 97*x^12 - 231*x^11 - 568*x^10 + 1136*x^9 + 2901*x^8 - 3249*x^7 - 5156*x^6 - 2558*x^5 + 479*x^4 + 28908*x^3 - 9246*x^2 - 37700*x + 25261, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} - 16 x^{14} + 48 x^{13} + 97 x^{12} - 231 x^{11} - 568 x^{10} + 1136 x^{9} + 2901 x^{8} - 3249 x^{7} - 5156 x^{6} - 2558 x^{5} + 479 x^{4} + 28908 x^{3} - 9246 x^{2} - 37700 x + 25261 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(17521464151279710991512529=17^{14}\cdot 101^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $37.82$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $17, 101$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{15309694251909030947881760157667603} a^{15} + \frac{7059906514832358140232875171870640}{15309694251909030947881760157667603} a^{14} + \frac{1629098721879204265094623312243948}{15309694251909030947881760157667603} a^{13} + \frac{5279958959766116106151589521217927}{15309694251909030947881760157667603} a^{12} - \frac{3808752402691345730553760300628604}{15309694251909030947881760157667603} a^{11} + \frac{1109127866760003134541267930931315}{15309694251909030947881760157667603} a^{10} + \frac{6697119189742204627201265298352873}{15309694251909030947881760157667603} a^{9} - \frac{4841478226413413293872174412453683}{15309694251909030947881760157667603} a^{8} - \frac{6496375667132855992291357703151910}{15309694251909030947881760157667603} a^{7} + \frac{6889688802260411695373191438754932}{15309694251909030947881760157667603} a^{6} - \frac{5362233602319043474787276053961066}{15309694251909030947881760157667603} a^{5} + \frac{783293663255362589947542864288431}{15309694251909030947881760157667603} a^{4} + \frac{4594530663213738229178130884418732}{15309694251909030947881760157667603} a^{3} + \frac{2992273076776415072689959687133590}{15309694251909030947881760157667603} a^{2} - \frac{4855285028555924312735392627938987}{15309694251909030947881760157667603} a - \frac{4836137664045433616814271006521792}{15309694251909030947881760157667603}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3632124.57127 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1194:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 40 conjugacy class representatives for t16n1194
Character table for t16n1194 is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$17$17.8.7.3$x^{8} - 17$$8$$1$$7$$C_8$$[\ ]_{8}$
17.8.7.3$x^{8} - 17$$8$$1$$7$$C_8$$[\ ]_{8}$
101Data not computed