Normalized defining polynomial
\( x^{16} + 8 x^{14} - 16 x^{12} - 80 x^{11} - 312 x^{10} - 192 x^{9} + 274 x^{8} + 160 x^{7} - 216 x^{6} + 224 x^{5} + 1024 x^{4} + 784 x^{3} + 104 x^{2} - 32 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(174125907386032334045184=2^{40}\cdot 3^{8}\cdot 17^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{8} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{8}$, $\frac{1}{8} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{8} a$, $\frac{1}{8} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{8} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2}$, $\frac{1}{8} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{8} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{8} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{5168} a^{14} - \frac{139}{2584} a^{13} - \frac{305}{5168} a^{12} + \frac{63}{1292} a^{11} - \frac{75}{5168} a^{10} + \frac{37}{2584} a^{9} - \frac{251}{5168} a^{8} - \frac{89}{646} a^{7} - \frac{2103}{5168} a^{6} + \frac{685}{2584} a^{5} + \frac{495}{5168} a^{4} - \frac{641}{1292} a^{3} + \frac{1277}{5168} a^{2} - \frac{231}{2584} a - \frac{1443}{5168}$, $\frac{1}{8758715893456} a^{15} - \frac{227053973}{8758715893456} a^{14} + \frac{101488926999}{8758715893456} a^{13} - \frac{460859638821}{8758715893456} a^{12} - \frac{543625077483}{8758715893456} a^{11} - \frac{410633087223}{8758715893456} a^{10} - \frac{3879270857}{515218581968} a^{9} + \frac{112717117633}{8758715893456} a^{8} - \frac{2180105854095}{8758715893456} a^{7} - \frac{3553283972589}{8758715893456} a^{6} + \frac{1605340733927}{8758715893456} a^{5} - \frac{874980604733}{8758715893456} a^{4} - \frac{173808489339}{515218581968} a^{3} + \frac{2528736511969}{8758715893456} a^{2} + \frac{3789054428527}{8758715893456} a - \frac{2549260198495}{8758715893456}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 366841.269079 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4.C_2^3.C_2$ (as 16T264):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $D_4.C_2^3.C_2$ |
| Character table for $D_4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{3}) \), 4.4.9792.1, 4.4.4352.1, \(\Q(\sqrt{2}, \sqrt{3})\), 8.8.1534132224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |