Normalized defining polynomial
\( x^{16} - 7 x^{15} - 2022 x^{14} + 12208 x^{13} + 1582461 x^{12} - 8736888 x^{11} - 621467375 x^{10} + 3540601088 x^{9} + 130023633221 x^{8} - 902801827044 x^{7} - 12312300080542 x^{6} + 118985616572265 x^{5} + 28489887648616 x^{4} - 1639799050910109 x^{3} - 7553763870360839 x^{2} + 51111767470296455 x + 100142470449872159 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17328553034618181867273005889005225191371184588849=61^{12}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1195.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{12} + \frac{1}{6} a^{9} - \frac{1}{2} a^{8} + \frac{1}{6} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{36} a^{14} - \frac{1}{12} a^{13} + \frac{5}{36} a^{12} - \frac{1}{4} a^{11} - \frac{1}{18} a^{10} + \frac{7}{36} a^{9} - \frac{5}{36} a^{8} - \frac{13}{36} a^{7} - \frac{1}{6} a^{6} - \frac{17}{36} a^{5} + \frac{1}{6} a^{4} - \frac{4}{9} a^{3} - \frac{1}{3} a^{2} - \frac{17}{36} a + \frac{17}{36}$, $\frac{1}{5954258058002335164041321541354387672589074505345477482643430047597337641799061433216431130420715145776036642089264056} a^{15} + \frac{26042432692458582643842795514207132905872887369188229478686926849277024627821557433624091971253685150391460958660291}{2977129029001167582020660770677193836294537252672738741321715023798668820899530716608215565210357572888018321044632028} a^{14} + \frac{16962872838338627236688024604129732428913228820243797804166952788930649969128836394967951532187834321793987294681423}{1488564514500583791010330385338596918147268626336369370660857511899334410449765358304107782605178786444009160522316014} a^{13} - \frac{274822147651836819441585915827551218591315269591122239878897597044811139757679225281818740663301832681080468130380823}{1488564514500583791010330385338596918147268626336369370660857511899334410449765358304107782605178786444009160522316014} a^{12} + \frac{4657852833756279902440776994495211880638239915350810234916189549901784548244185373322744689871810294144008411524321}{52692549185861373133109040188976882058310393852614844979145398651303872936274879939968417083369160582088819841497912} a^{11} + \frac{892175972113684056173320077605277925287326836831006504145316056439691057637906752588638384098224881317638757874511853}{5954258058002335164041321541354387672589074505345477482643430047597337641799061433216431130420715145776036642089264056} a^{10} - \frac{365728447633116153635851054971430254406417943159042022739410391295038013632961714499868783957129182238454905583580647}{2977129029001167582020660770677193836294537252672738741321715023798668820899530716608215565210357572888018321044632028} a^{9} + \frac{241367562876449898173579111243289462887378142505479362830228291948534971902270264818755292634623514028726625358055103}{992376343000389194006886923559064612098179084224246247107238341266222940299843572202738521736785857629339440348210676} a^{8} + \frac{2895293290532190477340902988672764033973804399720940269762566496505194489064130912872453077028173957683781157998223843}{5954258058002335164041321541354387672589074505345477482643430047597337641799061433216431130420715145776036642089264056} a^{7} - \frac{2786928750420260679520652922575441784505775349723768258904986485795116719855683675149645610303508104276761240907531129}{5954258058002335164041321541354387672589074505345477482643430047597337641799061433216431130420715145776036642089264056} a^{6} - \frac{2293991827429973954834497875074388710888934550692292778120169145712187481455566219927201657433171661222010737258369907}{5954258058002335164041321541354387672589074505345477482643430047597337641799061433216431130420715145776036642089264056} a^{5} - \frac{872849206901521967975901815879946461132307139261612712047218746213429441876388885245114897972630120062515705193589279}{2977129029001167582020660770677193836294537252672738741321715023798668820899530716608215565210357572888018321044632028} a^{4} + \frac{478037805084817871067036347103042578271976593147302513770919564330790586433446653338213792304912506805971033665159267}{2977129029001167582020660770677193836294537252672738741321715023798668820899530716608215565210357572888018321044632028} a^{3} + \frac{1147778782897180236056362493821783891940305422710861854906933908729379574325787672470444225932228679912505536987134893}{5954258058002335164041321541354387672589074505345477482643430047597337641799061433216431130420715145776036642089264056} a^{2} + \frac{108560406315143222020240564647617052244247768560939511918365614004259693530631312277014051406182615484166924140925765}{992376343000389194006886923559064612098179084224246247107238341266222940299843572202738521736785857629339440348210676} a - \frac{10567619689439540511730576751462774819427389358339530311094068213909054894665542339370398472004208371611659493409957}{57808330660216846252828364479168812355233733061606577501392524733954734386398654691421661460395292677437248952322952}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 713145714456000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$OD_{16}.C_2$ (as 16T40):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $OD_{16}.C_2$ |
| Character table for $OD_{16}.C_2$ |
Intermediate fields
| \(\Q(\sqrt{97}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{5917}) \), 4.4.3396056233.1, 4.4.912673.1, \(\Q(\sqrt{61}, \sqrt{97})\), 8.8.11533197937698150289.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| $97$ | 97.8.7.3 | $x^{8} - 60625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 97.8.7.3 | $x^{8} - 60625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |