Normalized defining polynomial
\( x^{16} - 2 x^{15} - 573 x^{14} + 1854 x^{13} + 73174 x^{12} - 418126 x^{11} - 3206305 x^{10} + 28578434 x^{9} + 34172043 x^{8} - 818116608 x^{7} + 1087127760 x^{6} + 9016044960 x^{5} - 24625464628 x^{4} - 11048871344 x^{3} + 45607026072 x^{2} + 42989593936 x + 10795710088 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1729972723111358956551996577891668583251968=2^{34}\cdot 17^{8}\cdot 4129^{3}\cdot 5897^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $436.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 4129, 5897$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{236784435508950380295416503184312469254154186099734400685714660427350718328} a^{15} - \frac{8814967016823185937092836210140629060763438147582701389183663366638725313}{78928145169650126765138834394770823084718062033244800228571553475783572776} a^{14} + \frac{2189934151317613163979088417844675466000832019473179259160949957973133421}{19732036292412531691284708598692705771179515508311200057142888368945893194} a^{13} - \frac{2116807501177733912202623259619948279213573265250765947734973353532064847}{19732036292412531691284708598692705771179515508311200057142888368945893194} a^{12} - \frac{649296109473734051042488014213446252475750302042130682200475307827890937}{118392217754475190147708251592156234627077093049867200342857330213675359164} a^{11} + \frac{10500638944461781026647119941118254238245302407168634891897338455067112029}{59196108877237595073854125796078117313538546524933600171428665106837679582} a^{10} + \frac{56209637363378944535884709619528151345017091547354515972812844494734293519}{236784435508950380295416503184312469254154186099734400685714660427350718328} a^{9} + \frac{21151202260676734249738344810097726583955396862206049934785355796968527}{236784435508950380295416503184312469254154186099734400685714660427350718328} a^{8} + \frac{4058513713119126108061108545155983804110498372650888126392916691417872527}{118392217754475190147708251592156234627077093049867200342857330213675359164} a^{7} - \frac{14285048821356545543360477205338334324434876548435916248896682194297883168}{29598054438618797536927062898039058656769273262466800085714332553418839791} a^{6} - \frac{673283529356068490223567600671567446886839550229631152313590070629584333}{29598054438618797536927062898039058656769273262466800085714332553418839791} a^{5} + \frac{1095377251076975250639826723541559770836846856062386495866746830468934502}{29598054438618797536927062898039058656769273262466800085714332553418839791} a^{4} + \frac{24771926089369629120331172404356977076592709880056630180822671516565234671}{59196108877237595073854125796078117313538546524933600171428665106837679582} a^{3} - \frac{237987133322325316097728018401752120925571727405944947889605163624874231}{9866018146206265845642354299346352885589757754155600028571444184472946597} a^{2} - \frac{1100380267192196432939379969697288177067210685109145161456940490969351700}{9866018146206265845642354299346352885589757754155600028571444184472946597} a - \frac{5686467445617748044067864362953860924416632750042734190810575222771145833}{29598054438618797536927062898039058656769273262466800085714332553418839791}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1439115713660000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 74 conjugacy class representatives for t16n1472 are not computed |
| Character table for t16n1472 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{34}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{2}, \sqrt{17})\), 8.8.33318975217221632.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.8.22.84 | $x^{8} + 4 x^{7} + 10 x^{4} + 4 x^{2} + 14$ | $8$ | $1$ | $22$ | $D_4$ | $[2, 3, 7/2]$ | |
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 4129 | Data not computed | ||||||
| 5897 | Data not computed | ||||||