Properties

Label 16.8.17176222087...6729.1
Degree $16$
Signature $[8, 4]$
Discriminant $17^{14}\cdot 101^{2}$
Root discriminant $21.24$
Ramified primes $17, 101$
Class number $1$
Class group Trivial
Galois group 16T1194

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 29, -6, -61, -25, 109, 45, -118, -70, 148, 3, -93, 32, 21, -12, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 - 12*x^14 + 21*x^13 + 32*x^12 - 93*x^11 + 3*x^10 + 148*x^9 - 70*x^8 - 118*x^7 + 45*x^6 + 109*x^5 - 25*x^4 - 61*x^3 - 6*x^2 + 29*x - 1)
 
gp: K = bnfinit(x^16 - x^15 - 12*x^14 + 21*x^13 + 32*x^12 - 93*x^11 + 3*x^10 + 148*x^9 - 70*x^8 - 118*x^7 + 45*x^6 + 109*x^5 - 25*x^4 - 61*x^3 - 6*x^2 + 29*x - 1, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} - 12 x^{14} + 21 x^{13} + 32 x^{12} - 93 x^{11} + 3 x^{10} + 148 x^{9} - 70 x^{8} - 118 x^{7} + 45 x^{6} + 109 x^{5} - 25 x^{4} - 61 x^{3} - 6 x^{2} + 29 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1717622208732448876729=17^{14}\cdot 101^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $21.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $17, 101$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{103} a^{14} + \frac{35}{103} a^{13} - \frac{3}{103} a^{12} + \frac{6}{103} a^{11} - \frac{16}{103} a^{10} - \frac{38}{103} a^{9} + \frac{8}{103} a^{8} - \frac{24}{103} a^{7} - \frac{24}{103} a^{6} - \frac{4}{103} a^{5} - \frac{48}{103} a^{4} - \frac{14}{103} a^{3} - \frac{15}{103} a^{2} + \frac{21}{103} a + \frac{48}{103}$, $\frac{1}{50360923} a^{15} - \frac{156749}{50360923} a^{14} - \frac{1272}{10609} a^{13} - \frac{9921209}{50360923} a^{12} - \frac{15633876}{50360923} a^{11} + \frac{346425}{1071509} a^{10} + \frac{23838497}{50360923} a^{9} - \frac{7323777}{50360923} a^{8} + \frac{10157341}{50360923} a^{7} + \frac{17693459}{50360923} a^{6} + \frac{12079246}{50360923} a^{5} + \frac{21970132}{50360923} a^{4} + \frac{6385825}{50360923} a^{3} + \frac{8408387}{50360923} a^{2} - \frac{2129649}{50360923} a - \frac{24337086}{50360923}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 37017.9300368 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1194:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 40 conjugacy class representatives for t16n1194
Character table for t16n1194 is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$17$17.8.7.3$x^{8} - 17$$8$$1$$7$$C_8$$[\ ]_{8}$
17.8.7.3$x^{8} - 17$$8$$1$$7$$C_8$$[\ ]_{8}$
$101$$\Q_{101}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{101}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{101}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{101}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{101}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{101}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{101}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{101}$$x + 2$$1$$1$$0$Trivial$[\ ]$
101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.1.1$x^{2} - 101$$2$$1$$1$$C_2$$[\ ]_{2}$
101.2.1.1$x^{2} - 101$$2$$1$$1$$C_2$$[\ ]_{2}$
101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$