Normalized defining polynomial
\( x^{16} - 8 x^{15} + 24 x^{14} + 80 x^{13} - 1056 x^{12} + 3872 x^{11} - 3040 x^{10} - 27544 x^{9} + 120834 x^{8} - 213624 x^{7} + 78280 x^{6} + 355344 x^{5} - 662896 x^{4} + 585152 x^{3} - 422432 x^{2} + 210216 x - 9281 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17142224957643668854696574976=2^{58}\cdot 3^{4}\cdot 7^{6}\cdot 79^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{17} a^{12} + \frac{3}{17} a^{11} + \frac{5}{17} a^{10} + \frac{4}{17} a^{9} + \frac{1}{17} a^{8} - \frac{1}{17} a^{7} - \frac{5}{17} a^{6} - \frac{1}{17} a^{5} - \frac{8}{17} a^{4} - \frac{1}{17} a^{3} - \frac{5}{17} a^{2} + \frac{3}{17} a + \frac{2}{17}$, $\frac{1}{17} a^{13} - \frac{4}{17} a^{11} + \frac{6}{17} a^{10} + \frac{6}{17} a^{9} - \frac{4}{17} a^{8} - \frac{2}{17} a^{7} - \frac{3}{17} a^{6} - \frac{5}{17} a^{5} + \frac{6}{17} a^{4} - \frac{2}{17} a^{3} + \frac{1}{17} a^{2} - \frac{7}{17} a - \frac{6}{17}$, $\frac{1}{17} a^{14} + \frac{1}{17} a^{11} - \frac{8}{17} a^{10} - \frac{5}{17} a^{9} + \frac{2}{17} a^{8} - \frac{7}{17} a^{7} - \frac{8}{17} a^{6} + \frac{2}{17} a^{5} - \frac{3}{17} a^{3} + \frac{7}{17} a^{2} + \frac{6}{17} a + \frac{8}{17}$, $\frac{1}{246993258887673872352184262575768501087} a^{15} - \frac{5273926568374479575121142716645368888}{246993258887673872352184262575768501087} a^{14} - \frac{5240703249902209187748591233101772983}{246993258887673872352184262575768501087} a^{13} - \frac{1301133768029973996255304049296062444}{246993258887673872352184262575768501087} a^{12} - \frac{75423914026135578886364581005941911222}{246993258887673872352184262575768501087} a^{11} - \frac{80094521421985988603335066973706900246}{246993258887673872352184262575768501087} a^{10} - \frac{93255782363797383175668388596442511419}{246993258887673872352184262575768501087} a^{9} + \frac{21590992234854566874187586757555874771}{246993258887673872352184262575768501087} a^{8} + \frac{26611082304804242421089193989350795288}{246993258887673872352184262575768501087} a^{7} + \frac{39445895688416853780831186477949499140}{246993258887673872352184262575768501087} a^{6} - \frac{101500256198994363462793664843391647580}{246993258887673872352184262575768501087} a^{5} - \frac{37607341082176878382060802867474956584}{246993258887673872352184262575768501087} a^{4} - \frac{42460704134342798121592521984687890075}{246993258887673872352184262575768501087} a^{3} - \frac{118495948891123918673526963707657320307}{246993258887673872352184262575768501087} a^{2} - \frac{85047046666350299738420704940090922843}{246993258887673872352184262575768501087} a - \frac{122749307921515624415678669642819609468}{246993258887673872352184262575768501087}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 240000295.454 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n781 are not computed |
| Character table for t16n781 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 4.4.14336.1, 4.4.7168.1, 8.8.3288334336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 79 | Data not computed | ||||||