Normalized defining polynomial
\( x^{16} - 3 x^{15} - 2248 x^{14} + 20785 x^{13} + 1485243 x^{12} - 21614001 x^{11} - 373958264 x^{10} + 8144026557 x^{9} + 15042335559 x^{8} - 78298872864 x^{7} + 3236328597138 x^{6} - 626802607944064 x^{5} + 4581066558613275 x^{4} + 111422777813856136 x^{3} - 1849537571150881115 x^{2} - 5596555580957524159 x + 165600259875929075027 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1680869644357963641125481571233506843563004905118353=61^{12}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1590.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{43} a^{13} - \frac{6}{43} a^{12} - \frac{17}{43} a^{11} + \frac{12}{43} a^{10} - \frac{12}{43} a^{9} - \frac{20}{43} a^{8} + \frac{6}{43} a^{7} - \frac{18}{43} a^{6} - \frac{17}{43} a^{4} + \frac{16}{43} a^{3} - \frac{21}{43} a^{2} - \frac{10}{43} a + \frac{11}{43}$, $\frac{1}{43} a^{14} - \frac{10}{43} a^{12} - \frac{4}{43} a^{11} + \frac{17}{43} a^{10} - \frac{6}{43} a^{9} + \frac{15}{43} a^{8} + \frac{18}{43} a^{7} + \frac{21}{43} a^{6} - \frac{17}{43} a^{5} - \frac{11}{43} a^{3} - \frac{7}{43} a^{2} - \frac{6}{43} a - \frac{20}{43}$, $\frac{1}{62735003465199055217183463694156530312970756481967974446412887359346359305128815988179521107031149989531406062597719104934862648587507} a^{15} + \frac{620822554366807029245242611923501290441969980801930853075198784414012650994310201320891967736477144783621908730858707859872022116763}{62735003465199055217183463694156530312970756481967974446412887359346359305128815988179521107031149989531406062597719104934862648587507} a^{14} + \frac{704544444287605071072997058684629684990923123134415602688092285415957166977779229392128368925199626137059924421423452388134298824937}{62735003465199055217183463694156530312970756481967974446412887359346359305128815988179521107031149989531406062597719104934862648587507} a^{13} - \frac{17406323051949070533748984009390994067866860200133451984244843677031595874202140901265868552360576823718400757565728315920060718966363}{62735003465199055217183463694156530312970756481967974446412887359346359305128815988179521107031149989531406062597719104934862648587507} a^{12} + \frac{7495076626029324881518761311559386468466740198334617209573215282303184964074822300602988443740295610289918759077972485727078111449254}{62735003465199055217183463694156530312970756481967974446412887359346359305128815988179521107031149989531406062597719104934862648587507} a^{11} - \frac{12525572037759696127397806535263192730832884844337567901764754354846278480096376887913911465684046855830524348588863793335445270318154}{62735003465199055217183463694156530312970756481967974446412887359346359305128815988179521107031149989531406062597719104934862648587507} a^{10} - \frac{3865729100181943471771136786113335911062512011505372148955035499840854152090930926744595794060519416525342877504847381516943071966602}{62735003465199055217183463694156530312970756481967974446412887359346359305128815988179521107031149989531406062597719104934862648587507} a^{9} + \frac{10603249952030875896197442561365933517830578181183732608785105103447558812992629474203214256929146899224875288148837945180272520585523}{62735003465199055217183463694156530312970756481967974446412887359346359305128815988179521107031149989531406062597719104934862648587507} a^{8} - \frac{18088709077868425446867952397642644813680457921370289222762884914447855532327323652678945404773937145164122993970664334134021296858794}{62735003465199055217183463694156530312970756481967974446412887359346359305128815988179521107031149989531406062597719104934862648587507} a^{7} + \frac{19000659016886520684098171007274107886512115156277445185386617502544683363584011228785376980678298007865976968371233246999743351556997}{62735003465199055217183463694156530312970756481967974446412887359346359305128815988179521107031149989531406062597719104934862648587507} a^{6} + \frac{14242355845279023438830732385908392718436634646791101235569346530556692478772175183634584258909317767481985824236387721918828969080699}{62735003465199055217183463694156530312970756481967974446412887359346359305128815988179521107031149989531406062597719104934862648587507} a^{5} - \frac{16414943777581315930274503052610568973964981287770337719264045939429665449853431650878234445269924755644683936800152231048124472190202}{62735003465199055217183463694156530312970756481967974446412887359346359305128815988179521107031149989531406062597719104934862648587507} a^{4} + \frac{8119890341485090132161339790734429414180920473264231812673657223234191672637919994990609332582333604349247412983416846765373978042709}{62735003465199055217183463694156530312970756481967974446412887359346359305128815988179521107031149989531406062597719104934862648587507} a^{3} + \frac{17698816991637046666884287517570839642286503138995052755417876395270853529132377111247752251727312720129454288171098370166614568831360}{62735003465199055217183463694156530312970756481967974446412887359346359305128815988179521107031149989531406062597719104934862648587507} a^{2} - \frac{20504678235917912564912607774309112563682142767661728793176159646928968043535738161858650767277094471321363001776795317521148049784458}{62735003465199055217183463694156530312970756481967974446412887359346359305128815988179521107031149989531406062597719104934862648587507} a + \frac{29374746792583411205737669975180811980956527170278123891028143263614944880436962502453334470278081843549346660481595064844423176770867}{62735003465199055217183463694156530312970756481967974446412887359346359305128815988179521107031149989531406062597719104934862648587507}$
Class group and class number
$C_{2}\times C_{2}\times C_{20}$, which has order $80$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 553669793628000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.1118720199956720578033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 97 | Data not computed | ||||||