Normalized defining polynomial
\( x^{16} - 4 x^{15} - 41 x^{14} - 11673 x^{13} - 454109 x^{12} + 2184995 x^{11} + 78893665 x^{10} + 3434567043 x^{9} + 57917196094 x^{8} - 481785086219 x^{7} - 12675582312061 x^{6} - 202418022839255 x^{5} - 1423478158368283 x^{4} + 18985774070078141 x^{3} + 250647316750174834 x^{2} + 1331571217615502528 x + 4011939306776803313 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1680869644357963641125481571233506843563004905118353=61^{12}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1590.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{61} a^{8} - \frac{2}{61} a^{7} + \frac{8}{61} a^{6} + \frac{5}{61} a^{5} - \frac{4}{61} a^{4} - \frac{30}{61} a^{3} - \frac{17}{61} a^{2} + \frac{5}{61} a + \frac{15}{61}$, $\frac{1}{61} a^{9} + \frac{4}{61} a^{7} + \frac{21}{61} a^{6} + \frac{6}{61} a^{5} + \frac{23}{61} a^{4} - \frac{16}{61} a^{3} - \frac{29}{61} a^{2} + \frac{25}{61} a + \frac{30}{61}$, $\frac{1}{122} a^{10} - \frac{1}{122} a^{9} - \frac{18}{61} a^{7} + \frac{7}{61} a^{6} + \frac{29}{61} a^{5} - \frac{23}{122} a^{4} - \frac{15}{122} a^{3} - \frac{1}{2} a^{2} - \frac{15}{122} a - \frac{29}{122}$, $\frac{1}{122} a^{11} - \frac{1}{122} a^{9} + \frac{14}{61} a^{7} - \frac{3}{61} a^{6} - \frac{29}{122} a^{5} - \frac{30}{61} a^{4} - \frac{29}{61} a^{3} + \frac{22}{61} a^{2} + \frac{7}{61} a + \frac{23}{122}$, $\frac{1}{244} a^{12} + \frac{1}{244} a^{9} - \frac{25}{61} a^{7} + \frac{47}{244} a^{6} - \frac{2}{61} a^{5} + \frac{77}{244} a^{4} - \frac{17}{244} a^{3} - \frac{117}{244} a^{2} - \frac{41}{122} a + \frac{99}{244}$, $\frac{1}{244} a^{13} - \frac{1}{244} a^{10} - \frac{1}{122} a^{9} - \frac{97}{244} a^{7} - \frac{13}{61} a^{6} - \frac{51}{244} a^{5} + \frac{25}{244} a^{4} - \frac{95}{244} a^{3} - \frac{20}{61} a^{2} + \frac{41}{244} a - \frac{13}{122}$, $\frac{1}{5861801512399528} a^{14} - \frac{6304407166503}{5861801512399528} a^{13} - \frac{741635802563}{5861801512399528} a^{12} + \frac{15408190247589}{5861801512399528} a^{11} - \frac{186613440603}{96095106760648} a^{10} + \frac{39270606570037}{5861801512399528} a^{9} + \frac{11603345581079}{5861801512399528} a^{8} + \frac{97630199397451}{5861801512399528} a^{7} - \frac{157032338067417}{1465450378099882} a^{6} - \frac{2708427411852}{732725189049941} a^{5} - \frac{1728206603910393}{5861801512399528} a^{4} + \frac{16488542188324}{732725189049941} a^{3} + \frac{51913473292184}{732725189049941} a^{2} - \frac{1762400602475111}{5861801512399528} a - \frac{977123559605033}{5861801512399528}$, $\frac{1}{44127778023069240308689389357164956359151655772246379406663262606472258015244193786964193136198841592} a^{15} - \frac{271717016890465127791125238736333378692994853747858134223376431961937592048028347028}{5515972252883655038586173669645619544893956971530797425832907825809032251905524223370524142024855199} a^{14} + \frac{11052187852905083492762633843250266451390363053551811240935300076531328973401786668420937765398285}{22063889011534620154344694678582478179575827886123189703331631303236129007622096893482096568099420796} a^{13} + \frac{5004589749476840083693791239183176048748457979988246753724662525535519487311854000256804481436979}{22063889011534620154344694678582478179575827886123189703331631303236129007622096893482096568099420796} a^{12} - \frac{28056645903520839458403063065619989404639543729241156659085615149752249083832252453819896506009173}{11031944505767310077172347339291239089787913943061594851665815651618064503811048446741048284049710398} a^{11} - \frac{22899701906242305108454514397169363129001152296483770686945562268743978694285609730642352346761335}{22063889011534620154344694678582478179575827886123189703331631303236129007622096893482096568099420796} a^{10} - \frac{3155292461198937268363600725417085647374551882150293646217429725286233239254163546736730771396826}{5515972252883655038586173669645619544893956971530797425832907825809032251905524223370524142024855199} a^{9} - \frac{63581667467043305301397256607785032485143300450996390273416828214230902104242874060779057365098141}{11031944505767310077172347339291239089787913943061594851665815651618064503811048446741048284049710398} a^{8} - \frac{8685521548088973493975182658485240159473594164681187451253124423243444710473492134758529447934858637}{44127778023069240308689389357164956359151655772246379406663262606472258015244193786964193136198841592} a^{7} + \frac{8967470219097910701251636953753086614013956022087452768001170297725733942236456064382131245827470479}{22063889011534620154344694678582478179575827886123189703331631303236129007622096893482096568099420796} a^{6} + \frac{17928603774923401193519337958098121571827024692877266699055010958714573713663585605564001676077042837}{44127778023069240308689389357164956359151655772246379406663262606472258015244193786964193136198841592} a^{5} - \frac{8514802765860578137223475867198019627027639754433499800621381624101733983855528837867424892150110879}{44127778023069240308689389357164956359151655772246379406663262606472258015244193786964193136198841592} a^{4} - \frac{5212941345533274786104044699402879923959463827477961127612273225288391740254976645290580894226791021}{11031944505767310077172347339291239089787913943061594851665815651618064503811048446741048284049710398} a^{3} - \frac{18124903683201598754916864831870906899959145265357161901280148883502592743031990184605056307034790193}{44127778023069240308689389357164956359151655772246379406663262606472258015244193786964193136198841592} a^{2} + \frac{47976917346209916744013909197472666879795488241121603111294179268579498935434653297244733712846089}{11031944505767310077172347339291239089787913943061594851665815651618064503811048446741048284049710398} a + \frac{2806110871176835737290681611957438758248811533885408122094806746286028158567516753900709805927696587}{44127778023069240308689389357164956359151655772246379406663262606472258015244193786964193136198841592}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2572468789910000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.1118720199956720578033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 97 | Data not computed | ||||||