Normalized defining polynomial
\( x^{16} - 7 x^{15} - 2205 x^{14} + 34778 x^{13} + 251441 x^{12} - 2431318 x^{11} + 838802231 x^{10} - 32204712967 x^{9} + 439598737165 x^{8} - 5536048330415 x^{7} + 69548060234944 x^{6} - 210196292452445 x^{5} - 3983226416739629 x^{4} + 41084287044150071 x^{3} - 204922171861025793 x^{2} + 784199220962810898 x - 1512274356748426639 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1680869644357963641125481571233506843563004905118353=61^{12}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1590.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{176521103511028866795877774743494672182101067469863996470319363201818207166293180250068691575609245121710323091563769612494100944864087} a^{15} - \frac{74678609674075679278957898897461669636475794083058196918307246814867733997029173573523296624435317957648904436344026871747161983997623}{176521103511028866795877774743494672182101067469863996470319363201818207166293180250068691575609245121710323091563769612494100944864087} a^{14} + \frac{84904997031428265490271266992593060825065262700600303525873890256504146543766021273338056636897690847044909482417789477681874957904367}{176521103511028866795877774743494672182101067469863996470319363201818207166293180250068691575609245121710323091563769612494100944864087} a^{13} + \frac{58749389682051332737297579873109170592220306481877338785391109870656603755255420091131599355910149751584752342165897455896387371815509}{176521103511028866795877774743494672182101067469863996470319363201818207166293180250068691575609245121710323091563769612494100944864087} a^{12} + \frac{23051687244832562304246534268596142588956114142378237129507231578110177801219585109643341695427759623220257153456666222348659997735080}{176521103511028866795877774743494672182101067469863996470319363201818207166293180250068691575609245121710323091563769612494100944864087} a^{11} - \frac{10241379003434592007273053208574925423655419691738737419611116803859194510382200921755448543011197594414995915054370364812273253701735}{176521103511028866795877774743494672182101067469863996470319363201818207166293180250068691575609245121710323091563769612494100944864087} a^{10} - \frac{47098050301004702975069464251262941085272582666829549610867026415817217057056457389031447249348362425857214085575277959302630809954272}{176521103511028866795877774743494672182101067469863996470319363201818207166293180250068691575609245121710323091563769612494100944864087} a^{9} - \frac{20778782911843836893205878257092643372498427104757392346420836872592196877238742656956548803026874607095711838081322283452810377065780}{176521103511028866795877774743494672182101067469863996470319363201818207166293180250068691575609245121710323091563769612494100944864087} a^{8} + \frac{43610471622294781151988007211675186014774836846180978659951995559943756485434037223457513512629657741093638137814188861140272676635774}{176521103511028866795877774743494672182101067469863996470319363201818207166293180250068691575609245121710323091563769612494100944864087} a^{7} + \frac{28127430396910652603481936839631972140806107121638350587921723141191640369069816381156412409722806107304160117381401599706702766552845}{176521103511028866795877774743494672182101067469863996470319363201818207166293180250068691575609245121710323091563769612494100944864087} a^{6} - \frac{28334627015050525886307231484948075788422976870241933566791959697065997581621812824620268590123523843034073320365084545384998585782291}{176521103511028866795877774743494672182101067469863996470319363201818207166293180250068691575609245121710323091563769612494100944864087} a^{5} + \frac{87726292931102005253017177285362947190561220256388288045004456005827352868054647550880771814121878705286337785743599859748006905053752}{176521103511028866795877774743494672182101067469863996470319363201818207166293180250068691575609245121710323091563769612494100944864087} a^{4} + \frac{84323460881668832767959255683111314971617267633770801262374345863097490982944711940302115233245987623948926355496307732581662239725941}{176521103511028866795877774743494672182101067469863996470319363201818207166293180250068691575609245121710323091563769612494100944864087} a^{3} - \frac{35939660725132481210139351483636585059327649749130106864843516336613846053852637528286180433364953402248121453078358423542566206200823}{176521103511028866795877774743494672182101067469863996470319363201818207166293180250068691575609245121710323091563769612494100944864087} a^{2} + \frac{16626041787489257651957183868949548767516119616942232192954234768966587440688337938983650810721985983837542841618690981288155890419931}{176521103511028866795877774743494672182101067469863996470319363201818207166293180250068691575609245121710323091563769612494100944864087} a - \frac{22863426467266289224681461093411460922276973409281031652721207331035845769776863969321674095452274926745914329755566237079890820009416}{176521103511028866795877774743494672182101067469863996470319363201818207166293180250068691575609245121710323091563769612494100944864087}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2104142378050000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.1118720199956720578033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 97 | Data not computed | ||||||