Properties

Label 16.8.16726428348...0000.3
Degree $16$
Signature $[8, 4]$
Discriminant $2^{24}\cdot 5^{8}\cdot 761^{5}$
Root discriminant $50.29$
Ramified primes $2, 5, 761$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1163

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-18569, 61100, 428, -80666, -7663, 3950, 35135, -6084, 3447, -5712, 164, 612, -307, 82, 3, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 + 3*x^14 + 82*x^13 - 307*x^12 + 612*x^11 + 164*x^10 - 5712*x^9 + 3447*x^8 - 6084*x^7 + 35135*x^6 + 3950*x^5 - 7663*x^4 - 80666*x^3 + 428*x^2 + 61100*x - 18569)
 
gp: K = bnfinit(x^16 - 2*x^15 + 3*x^14 + 82*x^13 - 307*x^12 + 612*x^11 + 164*x^10 - 5712*x^9 + 3447*x^8 - 6084*x^7 + 35135*x^6 + 3950*x^5 - 7663*x^4 - 80666*x^3 + 428*x^2 + 61100*x - 18569, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} + 3 x^{14} + 82 x^{13} - 307 x^{12} + 612 x^{11} + 164 x^{10} - 5712 x^{9} + 3447 x^{8} - 6084 x^{7} + 35135 x^{6} + 3950 x^{5} - 7663 x^{4} - 80666 x^{3} + 428 x^{2} + 61100 x - 18569 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1672642834856679833600000000=2^{24}\cdot 5^{8}\cdot 761^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $50.29$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 761$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11} a^{14} + \frac{4}{11} a^{13} + \frac{2}{11} a^{12} + \frac{5}{11} a^{11} + \frac{3}{11} a^{10} - \frac{1}{11} a^{9} - \frac{5}{11} a^{8} + \frac{3}{11} a^{7} + \frac{4}{11} a^{6} + \frac{3}{11} a^{5} - \frac{4}{11} a^{4} + \frac{1}{11} a^{3} + \frac{5}{11} a - \frac{4}{11}$, $\frac{1}{27709571814804752029848747341228447881927} a^{15} + \frac{645946473231094531244400608651341701601}{27709571814804752029848747341228447881927} a^{14} - \frac{12191672447003032594757612181603323200087}{27709571814804752029848747341228447881927} a^{13} + \frac{12922590861552881282635339648373034248166}{27709571814804752029848747341228447881927} a^{12} - \frac{8263087093964345129542087995908284211058}{27709571814804752029848747341228447881927} a^{11} - \frac{1145149680734598640409276541620250881210}{2519051983164068366349886121929858898357} a^{10} - \frac{354565681845780978774469758096391257416}{27709571814804752029848747341228447881927} a^{9} - \frac{8731457373299438787617254243734409195754}{27709571814804752029848747341228447881927} a^{8} + \frac{10341770517795901365896389771919344752455}{27709571814804752029848747341228447881927} a^{7} + \frac{10238335023683078783425368944737271076042}{27709571814804752029848747341228447881927} a^{6} - \frac{7697107719818791755081812288651056591936}{27709571814804752029848747341228447881927} a^{5} - \frac{11254931723752898228035955005346519765755}{27709571814804752029848747341228447881927} a^{4} - \frac{5600668534619085928994607913081801715539}{27709571814804752029848747341228447881927} a^{3} + \frac{11470174624093577371267430831164169263157}{27709571814804752029848747341228447881927} a^{2} - \frac{1206855619875356361938548804780637303862}{27709571814804752029848747341228447881927} a - \frac{13387102797834380141401201618461329524051}{27709571814804752029848747341228447881927}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 48311584.5278 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1163:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 52 conjugacy class representatives for t16n1163 are not computed
Character table for t16n1163 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.1948160000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
761Data not computed