Normalized defining polynomial
\( x^{16} - x^{15} - 37 x^{14} - 42 x^{13} + 578 x^{12} + 1705 x^{11} - 4367 x^{10} - 18627 x^{9} + 7346 x^{8} + 117118 x^{7} - 7647 x^{6} - 352485 x^{5} - 65817 x^{4} + 901634 x^{3} - 732188 x^{2} + 138288 x + 16448 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1656482725689092973620649257089=13^{14}\cdot 29^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{6} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{18} a^{12} + \frac{4}{9} a^{9} - \frac{1}{3} a^{8} - \frac{1}{6} a^{7} + \frac{1}{9} a^{6} + \frac{1}{3} a^{5} - \frac{4}{9} a^{4} - \frac{1}{3} a^{3} + \frac{5}{18} a^{2} - \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{18} a^{13} + \frac{1}{9} a^{10} + \frac{1}{6} a^{8} + \frac{4}{9} a^{7} + \frac{1}{3} a^{6} - \frac{1}{9} a^{5} - \frac{1}{3} a^{4} - \frac{7}{18} a^{3} + \frac{2}{9} a^{2} + \frac{1}{9} a - \frac{1}{3}$, $\frac{1}{108} a^{14} + \frac{1}{108} a^{13} - \frac{1}{108} a^{12} + \frac{2}{27} a^{11} + \frac{1}{54} a^{10} + \frac{37}{108} a^{9} + \frac{23}{108} a^{8} + \frac{29}{108} a^{7} + \frac{8}{27} a^{6} - \frac{1}{54} a^{5} - \frac{11}{108} a^{4} + \frac{1}{12} a^{3} - \frac{41}{108} a^{2} + \frac{10}{27} a + \frac{4}{27}$, $\frac{1}{63260735439337590343802205375726768} a^{15} + \frac{16314519136446152005201932773783}{63260735439337590343802205375726768} a^{14} - \frac{329839784426032493940777724314503}{21086911813112530114600735125242256} a^{13} - \frac{62293578282869865260405481192529}{31630367719668795171901102687863384} a^{12} - \frac{58231383600342807952136485947067}{31630367719668795171901102687863384} a^{11} + \frac{838594675104955071204913645842353}{7028970604370843371533578375080752} a^{10} + \frac{5029312011452244505719852593945795}{21086911813112530114600735125242256} a^{9} + \frac{20736364682306584608697272365286253}{63260735439337590343802205375726768} a^{8} - \frac{3095714282795439858159105720044059}{31630367719668795171901102687863384} a^{7} - \frac{2253843900707109729835856059461343}{10543455906556265057300367562621128} a^{6} - \frac{11304580328242416256835327843409247}{63260735439337590343802205375726768} a^{5} + \frac{14741779975303499108887134589794547}{63260735439337590343802205375726768} a^{4} - \frac{24793411129502456933500988443501241}{63260735439337590343802205375726768} a^{3} + \frac{4440799574250604306678148575381021}{31630367719668795171901102687863384} a^{2} + \frac{5284482353382870673182474290083559}{15815183859834397585950551343931692} a - \frac{560211451785042721878606855127361}{3953795964958599396487637835982923}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3189409072.55 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).C_2$ (as 16T123):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $(C_2\times OD_{16}).C_2$ |
| Character table for $(C_2\times OD_{16}).C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{377}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{29}) \), 4.4.1847677.1 x2, 4.4.63713.1 x2, \(\Q(\sqrt{13}, \sqrt{29})\), 8.8.3413910296329.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.7.2 | $x^{8} - 52$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 13.8.7.2 | $x^{8} - 52$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $29$ | 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |