Normalized defining polynomial
\( x^{16} - 862 x^{14} + 138966 x^{12} + 3513246 x^{10} - 558556815 x^{8} - 9719978496 x^{6} + 533135995896 x^{4} + 10352687231872 x^{2} + 6668459216896 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(162393855437479514050983820757859401106269862363136=2^{26}\cdot 193^{8}\cdot 257^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1374.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 193, 257$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{3}{8} a^{5} - \frac{3}{8} a^{4}$, $\frac{1}{6168} a^{12} - \frac{29}{514} a^{10} + \frac{175}{1542} a^{8} + \frac{271}{1542} a^{6} - \frac{1753}{6168} a^{4} - \frac{1}{2} a^{2} - \frac{1}{3}$, $\frac{1}{24672} a^{13} + \frac{199}{4112} a^{11} - \frac{421}{12336} a^{9} + \frac{2855}{12336} a^{7} + \frac{9041}{24672} a^{5} - \frac{1}{4} a^{3} - \frac{1}{12} a$, $\frac{1}{900614660400475698366407441276170135333248} a^{14} - \frac{30547702017978721340870559817029236695}{450307330200237849183203720638085067666624} a^{12} - \frac{29391572333653099368545406673591102777717}{450307330200237849183203720638085067666624} a^{10} + \frac{39762273919311351916418114870557917573967}{450307330200237849183203720638085067666624} a^{8} - \frac{55224895245855526312055001734549050332485}{300204886800158566122135813758723378444416} a^{6} - \frac{5814750805608738761557054776475757240911}{56288416275029731147900465079760633458328} a^{4} + \frac{187854810705341079254924303239293231959}{438042150000231370800781829414479637808} a^{2} - \frac{9633177427525684996927968819051530101}{27377634375014460675048864338404977363}$, $\frac{1}{1131172013462997477148207746242869689978559488} a^{15} - \frac{1}{1801229320800951396732814882552340270666496} a^{14} - \frac{1052646052018518586542694828450815058247}{565586006731498738574103873121434844989279744} a^{13} + \frac{30547702017978721340870559817029236695}{900614660400475698366407441276170135333248} a^{12} + \frac{9895329420221589068864768502370274051038139}{565586006731498738574103873121434844989279744} a^{11} - \frac{83185260216406362927255523485930164138939}{900614660400475698366407441276170135333248} a^{10} + \frac{7617617143960453688699178510055617542689557}{188528668910499579524701291040478281663093248} a^{9} - \frac{152339106469370814212219045030079184490623}{900614660400475698366407441276170135333248} a^{8} + \frac{41523380785984453288668642742611599285373649}{1131172013462997477148207746242869689978559488} a^{7} + \frac{130276116945895167842588955174229894943589}{600409773600317132244271627517446756888832} a^{6} + \frac{9744967004687041555982946402837389773728685}{70698250841437342321762984140179355623659968} a^{5} + \frac{48031063011881037122482403586296232334657}{112576832550059462295800930159521266916656} a^{4} - \frac{233069590064417863872161399859971113900801}{550180940400290601725781977744586425086848} a^{3} - \frac{406875885705456764655315217946533050863}{876084300000462741601563658828959275616} a^{2} - \frac{8003648765280487769725240515280179984607}{17193154387509081303930686804518325783964} a - \frac{8872228473744387839060447759676723631}{27377634375014460675048864338404977363}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{12}$, which has order $96$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35530711807900000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 38 conjugacy class representatives for t16n813 |
| Character table for t16n813 is not computed |
Intermediate fields
| \(\Q(\sqrt{257}) \), \(\Q(\sqrt{193}) \), \(\Q(\sqrt{49601}) \), 4.4.19682073608.1, 4.4.528392.1, \(\Q(\sqrt{193}, \sqrt{257})\), 8.8.387384021510730137664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.11.15 | $x^{4} + 30$ | $4$ | $1$ | $11$ | $D_{4}$ | $[2, 3, 4]$ | |
| 2.4.10.2 | $x^{4} + 2 x^{2} - 1$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 193 | Data not computed | ||||||
| 257 | Data not computed | ||||||