Normalized defining polynomial
\( x^{16} - 2 x^{15} - 70 x^{14} - 42 x^{13} + 347 x^{12} + 5870 x^{11} + 28118 x^{10} - 102844 x^{9} - 47498 x^{8} - 113540 x^{7} - 1244349 x^{6} + 5656900 x^{5} - 19099742 x^{4} + 66098316 x^{3} - 87981517 x^{2} + 76194534 x - 16911551 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1591115136537072994381860110336=2^{16}\cdot 43^{5}\cdot 2777^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{4916} a^{14} - \frac{1249}{4916} a^{13} - \frac{369}{1229} a^{12} - \frac{833}{4916} a^{11} - \frac{979}{2458} a^{10} - \frac{707}{4916} a^{9} - \frac{291}{4916} a^{8} + \frac{153}{1229} a^{7} - \frac{567}{4916} a^{6} - \frac{599}{4916} a^{5} - \frac{1193}{4916} a^{4} - \frac{585}{2458} a^{3} - \frac{583}{4916} a^{2} + \frac{1171}{4916} a - \frac{1603}{4916}$, $\frac{1}{673783456049016706099748709597640380266269353969920502143932} a^{15} - \frac{19695217535524795144530438966371653959486961008799035465}{336891728024508353049874354798820190133134676984960251071966} a^{14} - \frac{96800241188580877139664669344753601233714559178125890303311}{673783456049016706099748709597640380266269353969920502143932} a^{13} - \frac{324454050760659597083448188439754493040652258994048253041957}{673783456049016706099748709597640380266269353969920502143932} a^{12} - \frac{266465496015019517900638506324760862163590355098801283865549}{673783456049016706099748709597640380266269353969920502143932} a^{11} + \frac{231488710882736538539357269086033707153784496330027393219959}{673783456049016706099748709597640380266269353969920502143932} a^{10} - \frac{77205637926759743895682011623835361128155755606365468732758}{168445864012254176524937177399410095066567338492480125535983} a^{9} + \frac{36279339580056391548845186993803441823195689197023919661619}{673783456049016706099748709597640380266269353969920502143932} a^{8} + \frac{333077855058505420128622639008735773975499474849494579174797}{673783456049016706099748709597640380266269353969920502143932} a^{7} - \frac{26132603801409480725259318515169130648521829632982560244113}{168445864012254176524937177399410095066567338492480125535983} a^{6} + \frac{17422311869237664813258372661214708176597912029892401994783}{336891728024508353049874354798820190133134676984960251071966} a^{5} + \frac{141572136137209930738160701467987913367538727964142188294559}{673783456049016706099748709597640380266269353969920502143932} a^{4} + \frac{296626322039173371742019952236232166037481672469997141291463}{673783456049016706099748709597640380266269353969920502143932} a^{3} + \frac{7918946044280742070942826198972423850357595912763357665897}{336891728024508353049874354798820190133134676984960251071966} a^{2} - \frac{147439707735994026037092017693754984496740587814382143619001}{336891728024508353049874354798820190133134676984960251071966} a - \frac{82236392234033838125940660664028750120530011353329713692421}{673783456049016706099748709597640380266269353969920502143932}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1425145226.88 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12288 |
| The 64 conjugacy class representatives for t16n1760 are not computed |
| Character table for t16n1760 is not computed |
Intermediate fields
| 4.4.2777.1, 8.8.1326417388.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.12.12.8 | $x^{12} + 8 x^{10} - 31 x^{8} + 64 x^{6} - 53 x^{4} - 8 x^{2} - 45$ | $2$ | $6$ | $12$ | 12T51 | $[2, 2, 2, 2]^{6}$ | |
| $43$ | 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 43.6.0.1 | $x^{6} - x + 26$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 43.6.3.2 | $x^{6} - 1849 x^{2} + 795070$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 2777 | Data not computed | ||||||