Normalized defining polynomial
\( x^{16} - 4 x^{15} - 6 x^{14} + 170 x^{13} - 1453 x^{12} - 2480 x^{11} + 2306 x^{10} - 8656 x^{9} + 375038 x^{8} + 597784 x^{7} + 3268904 x^{6} - 7765050 x^{5} - 40172297 x^{4} - 60807646 x^{3} - 67053946 x^{2} + 5289064 x + 49189808 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1591115136537072994381860110336=2^{16}\cdot 43^{5}\cdot 2777^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{12} + \frac{1}{6} a^{10} + \frac{1}{6} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{6} a^{5} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{18} a^{14} - \frac{1}{18} a^{12} + \frac{2}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{1}{2} a^{6} + \frac{2}{9} a^{5} - \frac{1}{3} a^{4} + \frac{1}{9} a^{3} - \frac{1}{2} a^{2} - \frac{2}{9}$, $\frac{1}{59264934550622193716416363901226199763366283552153433264983372} a^{15} + \frac{764931215633670266266858790631524950614695918908044891488273}{29632467275311096858208181950613099881683141776076716632491686} a^{14} - \frac{1861365775487211726780023194526760637891112442930179967761339}{29632467275311096858208181950613099881683141776076716632491686} a^{13} + \frac{138629862674459048334955037429003592205170498929756066486677}{9877489091770365619402727316871033293894380592025572210830562} a^{12} - \frac{7560938340404587274469101821988362176357349852358068580986909}{59264934550622193716416363901226199763366283552153433264983372} a^{11} - \frac{6895360585594012392968151063505132858155166639221320795898275}{29632467275311096858208181950613099881683141776076716632491686} a^{10} + \frac{1196402435868333165019941458663078079277972728530718758431421}{4938744545885182809701363658435516646947190296012786105415281} a^{9} + \frac{441111250238014205072505176500931707930796821406069233169444}{14816233637655548429104090975306549940841570888038358316245843} a^{8} + \frac{601462522234580657266223764813830079669267657154391468172853}{1646248181961727603233787886145172215649063432004262035138427} a^{7} + \frac{4970366044461994609035769500230219011323405537328917149242375}{14816233637655548429104090975306549940841570888038358316245843} a^{6} + \frac{6848647716461313176308281128929288440580509243942456207063388}{14816233637655548429104090975306549940841570888038358316245843} a^{5} + \frac{7386110548121277523876772331105418365154113628223989492179463}{29632467275311096858208181950613099881683141776076716632491686} a^{4} + \frac{22088921403976118538798024698738303300438396335605178111123037}{59264934550622193716416363901226199763366283552153433264983372} a^{3} + \frac{580123732971882289141678494541489889459306678880318542139346}{1646248181961727603233787886145172215649063432004262035138427} a^{2} - \frac{10522563908162494784105523564817440421564019570126900272224959}{29632467275311096858208181950613099881683141776076716632491686} a - \frac{2985547444937998499973145927868625221904918352795779755075776}{14816233637655548429104090975306549940841570888038358316245843}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4461223349.95 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12288 |
| The 64 conjugacy class representatives for t16n1760 are not computed |
| Character table for t16n1760 is not computed |
Intermediate fields
| 4.4.2777.1, 8.8.1326417388.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.12.12.8 | $x^{12} + 8 x^{10} - 31 x^{8} + 64 x^{6} - 53 x^{4} - 8 x^{2} - 45$ | $2$ | $6$ | $12$ | 12T51 | $[2, 2, 2, 2]^{6}$ | |
| 43 | Data not computed | ||||||
| 2777 | Data not computed | ||||||