Normalized defining polynomial
\( x^{16} - x^{15} - 14 x^{14} + 14 x^{13} + 82 x^{12} - 77 x^{11} - 257 x^{10} + 206 x^{9} + 481 x^{8} - 273 x^{7} - 739 x^{6} + 335 x^{5} + 1236 x^{4} - 829 x^{3} - 1205 x^{2} + 670 x + 521 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1579217486082822509765625=3^{2}\cdot 5^{12}\cdot 7^{2}\cdot 19^{4}\cdot 103^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 19, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{17879} a^{13} + \frac{3866}{17879} a^{12} + \frac{2970}{17879} a^{11} - \frac{5882}{17879} a^{10} - \frac{8900}{17879} a^{9} + \frac{1223}{17879} a^{8} + \frac{8799}{17879} a^{7} - \frac{8576}{17879} a^{6} - \frac{5547}{17879} a^{5} + \frac{7302}{17879} a^{4} + \frac{5449}{17879} a^{3} - \frac{2145}{17879} a^{2} - \frac{8741}{17879} a - \frac{2893}{17879}$, $\frac{1}{17879} a^{14} + \frac{3858}{17879} a^{12} + \frac{8295}{17879} a^{11} + \frac{6703}{17879} a^{10} - \frac{8452}{17879} a^{9} + \frac{737}{17879} a^{8} - \frac{1773}{17879} a^{7} + \frac{1603}{17879} a^{6} - \frac{2796}{17879} a^{5} + \frac{6858}{17879} a^{4} - \frac{343}{941} a^{3} + \frac{308}{941} a^{2} - \frac{1497}{17879} a - \frac{7916}{17879}$, $\frac{1}{339701} a^{15} + \frac{3}{339701} a^{14} - \frac{2}{339701} a^{13} + \frac{169106}{339701} a^{12} + \frac{152980}{339701} a^{11} + \frac{81363}{339701} a^{10} - \frac{16178}{339701} a^{9} + \frac{160625}{339701} a^{8} - \frac{105030}{339701} a^{7} - \frac{60172}{339701} a^{6} + \frac{80243}{339701} a^{5} - \frac{101633}{339701} a^{4} - \frac{110530}{339701} a^{3} + \frac{53540}{339701} a^{2} - \frac{45578}{339701} a + \frac{94010}{339701}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1322820.99782 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 768 |
| The 40 conjugacy class representatives for t16n1046 |
| Character table for t16n1046 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.1957.1, 8.8.2393655625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | R | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.12.0.1 | $x^{12} - x^{4} - x^{3} - x^{2} + x - 1$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 5 | Data not computed | ||||||
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.12.0.1 | $x^{12} + 3 x^{2} - 2 x + 3$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $103$ | 103.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 103.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 103.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 103.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 103.8.4.1 | $x^{8} + 106090 x^{4} - 1092727 x^{2} + 2813772025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |