Normalized defining polynomial
\( x^{16} - 3 x^{15} - 120 x^{14} + 536 x^{13} - 963 x^{12} + 17814 x^{11} + 323635 x^{10} - 4574878 x^{9} + 10029551 x^{8} + 93173012 x^{7} - 652229481 x^{6} + 1679761614 x^{5} - 1689125860 x^{4} - 494535179 x^{3} + 1977927713 x^{2} - 423649600 x - 605912492 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1576096602835514136235637969229632141761=37^{14}\cdot 53^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $281.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{56} a^{13} + \frac{3}{28} a^{12} + \frac{1}{56} a^{11} - \frac{3}{56} a^{10} + \frac{13}{56} a^{9} + \frac{1}{7} a^{8} - \frac{1}{14} a^{7} - \frac{5}{14} a^{6} + \frac{23}{56} a^{5} + \frac{23}{56} a^{4} + \frac{27}{56} a^{3} - \frac{3}{14} a^{2} - \frac{5}{56} a + \frac{13}{28}$, $\frac{1}{1176} a^{14} + \frac{3}{392} a^{13} + \frac{145}{1176} a^{12} + \frac{1}{84} a^{11} + \frac{107}{588} a^{10} + \frac{89}{1176} a^{9} + \frac{31}{588} a^{8} - \frac{46}{147} a^{7} - \frac{527}{1176} a^{6} - \frac{1}{196} a^{5} - \frac{43}{588} a^{4} - \frac{131}{392} a^{3} - \frac{149}{392} a^{2} - \frac{17}{1176} a - \frac{17}{588}$, $\frac{1}{16065701601006502784038827218317901105940638303900459534640} a^{15} + \frac{1385457672419799947697030194376075111570807885514588373}{16065701601006502784038827218317901105940638303900459534640} a^{14} + \frac{658533935676289582427723599645502009561002951576198283}{286887528589401835429264771755676805463225683998222491690} a^{13} + \frac{744653944488044350672071014056379368389183589580246448827}{8032850800503251392019413609158950552970319151950229767320} a^{12} + \frac{123253791719094890858938369545705602329428386252716905521}{16065701601006502784038827218317901105940638303900459534640} a^{11} + \frac{161449362223974802745169447848145561413857498172089963109}{803285080050325139201941360915895055297031915195022976732} a^{10} + \frac{71162935777778984911143061701081231108734330279106535343}{1071046773400433518935921814554526740396042553593363968976} a^{9} - \frac{390694252882239457695466198206459293559435916112091365501}{2008212700125812848004853402289737638242579787987557441830} a^{8} + \frac{925031162446350946996420286238668719004200104813237823741}{5355233867002167594679609072772633701980212767966819844880} a^{7} - \frac{383305969208685172509334824284102146013714757122037965615}{803285080050325139201941360915895055297031915195022976732} a^{6} + \frac{7819183586357991148493481202682780488652111300253608883919}{16065701601006502784038827218317901105940638303900459534640} a^{5} - \frac{389982636843613104193217814869985695394471743555713856362}{1004106350062906424002426701144868819121289893993778720915} a^{4} - \frac{33045443424200971033680026713692768352955705592181137421}{382516704785869113905686362340902407284300911997629988920} a^{3} + \frac{4945518411866546302723637921826896998330549905618428855479}{16065701601006502784038827218317901105940638303900459534640} a^{2} - \frac{5876755887593747245586157629646844257147706212739078933823}{16065701601006502784038827218317901105940638303900459534640} a - \frac{2442645760758704213997034246278641420642522503163786576539}{8032850800503251392019413609158950552970319151950229767320}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 276563092521000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).C_2$ (as 16T123):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $(C_2\times OD_{16}).C_2$ |
| Character table for $(C_2\times OD_{16}).C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{37}) \), \(\Q(\sqrt{1961}) \), \(\Q(\sqrt{53}) \), 4.4.2684609.1 x2, 4.4.142284277.1 x2, \(\Q(\sqrt{37}, \sqrt{53})\), 8.8.20244815481412729.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $53$ | 53.8.6.2 | $x^{8} + 477 x^{4} + 70225$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 53.8.4.1 | $x^{8} + 101124 x^{4} - 148877 x^{2} + 2556515844$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |