Normalized defining polynomial
\( x^{16} - 6 x^{15} - 10 x^{14} + 396 x^{13} - 5964 x^{12} + 42356 x^{11} - 245620 x^{10} + 1239752 x^{9} - 4628026 x^{8} + 16756686 x^{7} - 39826634 x^{6} + 58692800 x^{5} + 32646687 x^{4} - 603931162 x^{3} + 1437441882 x^{2} - 1343332342 x + 445302103 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1571275555715210001755383712793895489=23^{10}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $182.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{32} a^{12} + \frac{1}{16} a^{11} - \frac{1}{16} a^{10} + \frac{3}{32} a^{9} + \frac{1}{32} a^{8} + \frac{1}{8} a^{7} - \frac{5}{32} a^{6} - \frac{1}{8} a^{5} + \frac{1}{32} a^{4} - \frac{1}{32} a^{3} - \frac{9}{32} a^{2} - \frac{5}{32} a - \frac{1}{32}$, $\frac{1}{32} a^{13} + \frac{1}{16} a^{11} - \frac{1}{32} a^{10} + \frac{3}{32} a^{9} + \frac{1}{16} a^{8} + \frac{3}{32} a^{7} + \frac{3}{16} a^{6} + \frac{1}{32} a^{5} + \frac{5}{32} a^{4} + \frac{9}{32} a^{3} + \frac{5}{32} a^{2} + \frac{1}{32} a + \frac{1}{16}$, $\frac{1}{32} a^{14} + \frac{3}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{8} a^{9} + \frac{1}{32} a^{8} - \frac{1}{16} a^{7} - \frac{5}{32} a^{6} + \frac{5}{32} a^{5} - \frac{1}{32} a^{4} - \frac{1}{32} a^{3} + \frac{11}{32} a^{2} + \frac{3}{8} a + \frac{1}{16}$, $\frac{1}{1363278043364142470979704704578960349705600050616602976} a^{15} + \frac{614183395924200287533217384075502175621305865723389}{340819510841035617744926176144740087426400012654150744} a^{14} + \frac{810213194538570330814602151537508347724124186450075}{1363278043364142470979704704578960349705600050616602976} a^{13} - \frac{249116056167437001352286873285111860273312011856417}{42602438855129452218115772018092510928300001581768843} a^{12} + \frac{164203223665124291547636705790104107592585808075847955}{1363278043364142470979704704578960349705600050616602976} a^{11} + \frac{56331780691461152668527229036177865389980451235213947}{1363278043364142470979704704578960349705600050616602976} a^{10} + \frac{87940576071572447053675449227286972625011157851715617}{1363278043364142470979704704578960349705600050616602976} a^{9} - \frac{113554949765009377741144439739643453129055116075556099}{1363278043364142470979704704578960349705600050616602976} a^{8} - \frac{35022733570931088069119060815270045376522062043327875}{170409755420517808872463088072370043713200006327075372} a^{7} + \frac{21043441643714369707707053334571577608376752190308977}{681639021682071235489852352289480174852800025308301488} a^{6} + \frac{35148075094101501447932268983395993860922986091526857}{681639021682071235489852352289480174852800025308301488} a^{5} + \frac{79400853320806420966269411856958928395098085324595127}{1363278043364142470979704704578960349705600050616602976} a^{4} + \frac{412442594958089955246420596856549546144640991505463341}{1363278043364142470979704704578960349705600050616602976} a^{3} - \frac{84838130615401851026567875686750189146665939359980275}{681639021682071235489852352289480174852800025308301488} a^{2} - \frac{81476053039559211465665673335375458457566796914507703}{340819510841035617744926176144740087426400012654150744} a - \frac{5590240606286710276160832176080110619658300311059}{1220481686091443572945125071243473903048880976380128}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 657786528118 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n817 |
| Character table for t16n817 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.54500230757132921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |