Normalized defining polynomial
\( x^{16} - 6 x^{15} - 130 x^{14} + 616 x^{13} + 5302 x^{12} - 21932 x^{11} - 56878 x^{10} + 339490 x^{9} - 316281 x^{8} - 1177018 x^{7} + 3353338 x^{6} - 1067350 x^{5} - 6133505 x^{4} + 8919920 x^{3} - 3939369 x^{2} - 263472 x + 505613 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1571275555715210001755383712793895489=23^{10}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $182.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{82} a^{8} + \frac{19}{41} a^{7} - \frac{4}{41} a^{6} + \frac{19}{41} a^{5} + \frac{27}{82} a^{4} + \frac{19}{41} a^{3} + \frac{33}{82} a^{2} - \frac{3}{82} a + \frac{1}{82}$, $\frac{1}{82} a^{9} + \frac{12}{41} a^{7} + \frac{7}{41} a^{6} - \frac{23}{82} a^{5} - \frac{2}{41} a^{4} - \frac{17}{82} a^{3} - \frac{27}{82} a^{2} + \frac{33}{82} a - \frac{19}{41}$, $\frac{1}{82} a^{10} + \frac{2}{41} a^{7} + \frac{5}{82} a^{6} - \frac{7}{41} a^{5} - \frac{9}{82} a^{4} - \frac{37}{82} a^{3} - \frac{21}{82} a^{2} + \frac{17}{41} a - \frac{12}{41}$, $\frac{1}{82} a^{11} + \frac{17}{82} a^{7} + \frac{9}{41} a^{6} + \frac{3}{82} a^{5} + \frac{19}{82} a^{4} - \frac{9}{82} a^{3} - \frac{8}{41} a^{2} - \frac{6}{41} a - \frac{2}{41}$, $\frac{1}{82} a^{12} + \frac{14}{41} a^{7} - \frac{25}{82} a^{6} + \frac{29}{82} a^{5} + \frac{12}{41} a^{4} - \frac{3}{41} a^{3} + \frac{1}{82} a^{2} - \frac{35}{82} a - \frac{17}{82}$, $\frac{1}{82} a^{13} - \frac{23}{82} a^{7} + \frac{7}{82} a^{6} + \frac{13}{41} a^{5} - \frac{12}{41} a^{4} + \frac{3}{82} a^{3} + \frac{25}{82} a^{2} - \frac{15}{82} a - \frac{14}{41}$, $\frac{1}{82} a^{14} - \frac{21}{82} a^{7} + \frac{3}{41} a^{6} + \frac{15}{41} a^{5} - \frac{16}{41} a^{4} - \frac{3}{82} a^{3} + \frac{3}{41} a^{2} - \frac{15}{82} a + \frac{23}{82}$, $\frac{1}{134754020331361509827040462063824766986} a^{15} + \frac{339104932535714599157241397271536873}{67377010165680754913520231031912383493} a^{14} - \frac{53023652559461715046287486886006083}{134754020331361509827040462063824766986} a^{13} - \frac{341661696164980278073204880241620794}{67377010165680754913520231031912383493} a^{12} + \frac{102974041849096942016213427678776722}{67377010165680754913520231031912383493} a^{11} - \frac{1815934589109074655627749630604089}{629691683791408924425422719924414799} a^{10} + \frac{544883152281199268167899608339794157}{134754020331361509827040462063824766986} a^{9} - \frac{232805676328798590526170544750558043}{67377010165680754913520231031912383493} a^{8} - \frac{17587612404718754637312755640542371795}{134754020331361509827040462063824766986} a^{7} + \frac{56802152245896742418279971832251681119}{134754020331361509827040462063824766986} a^{6} + \frac{65885980797248860420235036108474444359}{134754020331361509827040462063824766986} a^{5} - \frac{30098561055480653370428361062257410136}{67377010165680754913520231031912383493} a^{4} - \frac{33629788918914348720956081724935939420}{67377010165680754913520231031912383493} a^{3} - \frac{14605120114406003140809947287162137661}{67377010165680754913520231031912383493} a^{2} - \frac{14142591279310808688738207631125857669}{67377010165680754913520231031912383493} a - \frac{47357419155749619348061893625109882573}{134754020331361509827040462063824766986}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 662816664813 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1194 |
| Character table for t16n1194 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.54500230757132921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41 | Data not computed | ||||||