Normalized defining polynomial
\( x^{16} - 8 x^{15} + 108 x^{14} - 616 x^{13} + 1885 x^{12} - 3666 x^{11} - 70511 x^{10} + 372432 x^{9} - 1737261 x^{8} + 4697578 x^{7} - 3940881 x^{6} - 3038946 x^{5} + 14422779 x^{4} - 19052742 x^{3} - 7903064 x^{2} + 16252912 x - 3005776 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1571275555715210001755383712793895489=23^{10}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $182.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{92} a^{12} - \frac{3}{46} a^{11} - \frac{9}{92} a^{10} + \frac{2}{23} a^{9} + \frac{1}{92} a^{8} + \frac{5}{23} a^{7} - \frac{3}{46} a^{6} + \frac{43}{92} a^{5} - \frac{25}{92} a^{4} + \frac{37}{92} a^{3} - \frac{17}{46} a^{2} - \frac{15}{46} a + \frac{8}{23}$, $\frac{1}{92} a^{13} + \frac{1}{92} a^{11} + \frac{3}{92} a^{9} + \frac{3}{92} a^{8} + \frac{11}{46} a^{7} - \frac{4}{23} a^{6} - \frac{5}{23} a^{5} - \frac{11}{23} a^{4} + \frac{27}{92} a^{3} - \frac{27}{92} a^{2} - \frac{5}{46} a + \frac{2}{23}$, $\frac{1}{335948386539112177386008} a^{14} - \frac{7}{335948386539112177386008} a^{13} + \frac{1729438789901027853343}{335948386539112177386008} a^{12} - \frac{10376632739406167119967}{335948386539112177386008} a^{11} - \frac{7665362417363007089967}{167974193269556088693004} a^{10} + \frac{1899282174315257069765}{167974193269556088693004} a^{9} + \frac{11352933589101465369315}{335948386539112177386008} a^{8} - \frac{14371887312100695940787}{335948386539112177386008} a^{7} - \frac{36750092244475762755069}{167974193269556088693004} a^{6} - \frac{76707874166306041329191}{167974193269556088693004} a^{5} - \frac{100326220756191381345483}{335948386539112177386008} a^{4} + \frac{122948254867623008045785}{335948386539112177386008} a^{3} - \frac{38688272198210301133839}{83987096634778044346502} a^{2} + \frac{5787113640307609812009}{41993548317389022173251} a - \frac{18696087885383145505198}{41993548317389022173251}$, $\frac{1}{4638439372945521833168612456} a^{15} + \frac{862}{579804921618190229146076557} a^{14} - \frac{6645070753444007777864169}{2319219686472760916584306228} a^{13} - \frac{1255269030720052998748117}{2319219686472760916584306228} a^{12} + \frac{276415559994050539442580523}{4638439372945521833168612456} a^{11} - \frac{237338632662612197412896643}{2319219686472760916584306228} a^{10} - \frac{70275634626968760909181241}{4638439372945521833168612456} a^{9} + \frac{30290412824952775894049535}{579804921618190229146076557} a^{8} + \frac{550777489653262007637162681}{4638439372945521833168612456} a^{7} + \frac{459651191274750944310600045}{2319219686472760916584306228} a^{6} - \frac{37730881845202181617983589}{201671277084587905789939672} a^{5} + \frac{141611022353598738150286040}{579804921618190229146076557} a^{4} - \frac{1246654443033810431925476199}{4638439372945521833168612456} a^{3} + \frac{1081094363030700937098017689}{2319219686472760916584306228} a^{2} - \frac{295184881280285262255718823}{1159609843236380458292153114} a + \frac{248050272443147894219007534}{579804921618190229146076557}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 726736040744 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n817 |
| Character table for t16n817 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.54500230757132921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |