Normalized defining polynomial
\( x^{16} - 2 x^{14} - 18 x^{13} - 40 x^{12} + 12 x^{11} - 115 x^{10} - 582 x^{9} + 951 x^{8} + 5488 x^{7} + 3832 x^{6} - 8592 x^{5} - 13376 x^{4} - 1536 x^{3} + 6080 x^{2} + 2304 x - 256 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1544986154559078400000000=2^{24}\cdot 5^{8}\cdot 13^{8}\cdot 17^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{3}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{3}{16} a^{6} - \frac{3}{8} a^{5} + \frac{7}{16} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{544} a^{13} - \frac{7}{272} a^{12} - \frac{15}{272} a^{11} - \frac{27}{272} a^{10} + \frac{15}{136} a^{9} - \frac{27}{136} a^{8} + \frac{229}{544} a^{7} + \frac{45}{136} a^{6} - \frac{33}{544} a^{5} - \frac{69}{272} a^{4} - \frac{47}{136} a^{3} - \frac{4}{17} a^{2} + \frac{11}{34} a - \frac{5}{17}$, $\frac{1}{1088} a^{14} - \frac{11}{544} a^{12} - \frac{33}{544} a^{11} - \frac{1}{68} a^{10} + \frac{13}{272} a^{9} - \frac{467}{1088} a^{8} - \frac{75}{544} a^{7} + \frac{243}{1088} a^{6} - \frac{41}{136} a^{5} + \frac{31}{272} a^{4} + \frac{3}{34} a^{3} - \frac{33}{68} a^{2} - \frac{13}{34} a - \frac{1}{17}$, $\frac{1}{74406861560407728512} a^{15} + \frac{3703711007117871}{9300857695050966064} a^{14} + \frac{8821116768977541}{37203430780203864256} a^{13} + \frac{153635070258757459}{37203430780203864256} a^{12} + \frac{1824822398641737}{113425093842084952} a^{11} + \frac{1130372247567732793}{18601715390101932128} a^{10} - \frac{11212321716923409091}{74406861560407728512} a^{9} - \frac{61826571255264315}{1282876923455305664} a^{8} - \frac{12526908915226604445}{74406861560407728512} a^{7} + \frac{3494338174351107199}{9300857695050966064} a^{6} - \frac{5591278303777866313}{18601715390101932128} a^{5} - \frac{1240319175227292535}{9300857695050966064} a^{4} - \frac{618041460760565197}{2325214423762741516} a^{3} - \frac{113186702847580693}{1162607211881370758} a^{2} - \frac{3319968736036891}{20044951928989151} a + \frac{146990438919959093}{581303605940685379}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 614564.722407 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 55 conjugacy class representatives for t16n1123 are not computed |
| Character table for t16n1123 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.432640000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 5 | Data not computed | ||||||
| $13$ | 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |