Normalized defining polynomial
\( x^{16} - 20 x^{14} - 113 x^{12} + 2010 x^{10} + 9364 x^{8} - 19600 x^{6} - 80172 x^{4} - 4890 x^{2} + 72361 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15413672017951201296000000000000=2^{16}\cdot 3^{8}\cdot 5^{12}\cdot 59^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{118} a^{12} + \frac{1}{118} a^{10} + \frac{19}{118} a^{8} - \frac{17}{118} a^{6} - \frac{35}{118} a^{4} - \frac{19}{59} a^{2} - \frac{13}{118}$, $\frac{1}{118} a^{13} + \frac{1}{118} a^{11} + \frac{19}{118} a^{9} - \frac{17}{118} a^{7} - \frac{35}{118} a^{5} - \frac{19}{59} a^{3} - \frac{13}{118} a$, $\frac{1}{648563464366522} a^{14} - \frac{2056780978103}{648563464366522} a^{12} - \frac{5776234159947}{324281732183261} a^{10} - \frac{12847276337891}{324281732183261} a^{8} - \frac{244389643883775}{648563464366522} a^{6} + \frac{11983450025733}{324281732183261} a^{4} - \frac{152013980399891}{324281732183261} a^{2} - \frac{23849322654897}{324281732183261}$, $\frac{1}{174463571914594418} a^{15} - \frac{606649840980793}{174463571914594418} a^{13} + \frac{4556153218587623}{87231785957297209} a^{11} - \frac{14187806383128232}{87231785957297209} a^{9} + \frac{2899494268130213}{174463571914594418} a^{7} + \frac{36534900574733688}{87231785957297209} a^{5} - \frac{12013030557543573}{87231785957297209} a^{3} - \frac{9713827184334374}{87231785957297209} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 807311327.563 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times D_4).C_2^3$ (as 16T315):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $(C_2\times D_4).C_2^3$ |
| Character table for $(C_2\times D_4).C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{177}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{885}) \), \(\Q(\zeta_{15})^+\), 4.4.435125.1, \(\Q(\sqrt{5}, \sqrt{177})\), 8.8.15336035015625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.10 | $x^{8} + 2 x^{6} + 8 x^{3} + 16$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ |
| 2.8.8.9 | $x^{8} + 6 x^{6} + 4 x^{5} + 16$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 59 | Data not computed | ||||||